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ABSTRACT
We present new Atacama Large Millimeter/Submillimeter Array (ALMA) 850µm continuum observations of the original Lyman-
α Blob (LAB) in the SSA22 field at z = 3.1 (SSA22-LAB01). The ALMA map resolves the previously identified submil-
limeter source into three components with total flux density S850 = 1.68± 0.06 mJy, corresponding to a star formation rate of
∼200 M� yr−1. The submillimeter sources are associated with several faint (m≈ 27 mag) rest-frame ultraviolet sources identified
in Hubble Space Telescope Imaging Spectrograph (STIS) clear filter imaging (λ≈ 5850Å), at least one of which is spectroscop-
ically confirmed with Keck MOSFIRE to lie within 20 pkpc and 250 km s−1 of one of the ALMA components. We postulate
that some of these STIS sources represent a population of low-mass star-forming satellites surrounding the central submillimeter
sources, potentially contributing to their growth and activity through accretion. Using a high resolution cosmological zoom sim-
ulation of a 1013M� halo at z = 3, including stellar, dust and Lyα radiative transfer, we can accurately model the ALMA+STIS
observations and demonstrate that Lyα photons escaping from the central submillimeter sources are expected to resonantly scat-
ter in neutral hydrogen associated with the surrounding satellites. This gives rise to extended Lyα emission with similar surface
brightness and morphology to observed giant LABs.
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1. INTRODUCTION
SSA22-LAB01 (z = 3.1, Steidel et al. 2000) is the most

thoroughly studied (Chapman et al. 2004; Bower et al. 2004;
Geach et al. 2007, 2014; Matsuda et al. 2007, Weijmans et al.
2010; Hayes et al. 2011; Beck et al. 2016) giant (100 kpc in
projected extent) Lyman-α ‘Blob’ (LAB). LABs are intrigu-
ing objects: the origin of the extended Lyα emission could be
due to gravitational cooling radiation, with pristine hydrogen
at T ∼ 104−5 K cooling primarily via collisionally excited Lyα
as it flows into young galaxies (Katz et al. 1996; Haiman et al
2000; Fardal et al. 2001). Alternatively, galactic winds, pho-
toionization, fluorescence or scattering processes have been
proposed (Taniguchi & Shioya 2000; Geach et al. 2009, 2014;
Hine et al. 2016; Alexander et al. 2016). In any scenario the
picture is one of an extended CGM that is rich in cool gas (be
it clumpy or smoothly distributed), and so LABs reveal astro-
physics associated with the environment on scales compara-
ble to the virial radius of the massive dark matter halos they
trace. Nevertheless, the process (or processes) giving rise to
the extended line emission remains in question.

Cen & Zheng (2013) predicted that giant LABs should
contain far-infrared sources close to the gravitational centre
of the halo. The presence of a central submillimetre-bright
galaxy within SSA22-LAB01 has been in debate (Chapman
et al. 2004; Matsuda et al. 2007; Yang et al. 2012), but
was recently confirmed with the solid detection of an unre-
solved S850 = 4.6± 1.1 mJy submillimetre source using the
SCUBA-2 instrument on the 15-m James Clerk Maxwell Tele-
scope (JCMT) (Geach et al. 2014). Here we present new
high-resolution Band 7 continuum (λobs = 850µm) observa-
tions of SSA22-LAB01 with the Atacama Large Millime-
ter/Submillimeter Array (ALMA). These observations resolve
the rest-frame 210-µm emission at z = 3.1, close to the peak
of the thermal dust emission and therefore a good probe of
the cold and dense interstellar medium (ISM). Throughout
we assume a cosmology with ΩΛ = 0.72, Ωm = 0.28 and
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Figure 1. Observations of SSA22-LAB01. (left) MUSE continuum-subtracted line image showing the Lyα emission averaged over 4976–5000Å, with contours
at levels of 0.5, 0.7 and 1×10−19 erg s−1 cm−2 Å−1. Black lines show Lyα polarization (Hayes et al. 2011) and black contours show the 1′′ tapered ALMA 850µm
emission at >3σ significance; (center) zoom-in showing the ALMA map with the highest resolution image as background with the full resolution and tapered
850µm contours overlaid (starting at 3σ, increasing in steps of 1σ), yellow ellipses show the FWHM of the full resolution and tapered synthesized beams; (right)
HST STIS optical image of the same region as the central panel, indicating the orientation of the Keck MOSFIRE slit (§2.4) and the position of a faint companion
source we label ‘S1’. We overplot the same contours as the central ALMA map to illustrate how the submillimeter sources associate with emission in the STIS
map.

h = 0.697 = H0/100 km s−1 Mpc−1. At z = 3 1′′ subtends ap-
proximately 8 projected kiloparsecs (pkpc).

2. OBSERVATIONS
2.1. Atacama Large Millimeter/Submillimeter Array

SSA22-LAB01 was observed in two projects (2013.1.00922.S
[PI Geach] and 2013.1.00704S [PI Matsuda]) with a similar
configuration in Band 7: the full 7.5 GHz of bandwidth cen-
tred at 347.59 GHz was used to measure the continuum emis-
sion at approximately the same frequency as the SCUBA-2
detection of the target. A total of 36–40 12 metre antennas
were used in the observations, with baselines spanning 21-
918 m, thus capable of recovering emission on scales of up
to 5′′, with a maximum resolution of 0.4′′ (the full resolu-
tion). Antenna Tsys temperatures were approximately 100–
150 K and the mean precipitable water vapour column was
0.249 mm. Observations of the phase calibrator source J2206-
0031 confirm consistent flux scaling between the two projects
in the calibration phase. All calibration was performed using
the CASA software and the visibilities from each project con-
catenated into a single measurement set for which the total
integration time is 2860 seconds.

The dirty image reveals the two main components of sub-
millimetre emission, and we use this information to sup-
ply circular masks (each 2′′ in radius) at 22h17m26.0s,
+00◦12′36.3′′ and 22h17m26.1s, +00◦12′32.4′′ (J2000) to the
CASA clean task. We use a natural weighting of the visibili-
ties and clean down to a threshold of 70µJy within 1000 iter-
ations. We adopt multi-scale cleaning, allowing model Gaus-
sian components of width 0′′ (delta function), 0.5′′, 1′′, 2′′
and 3′′. The clean is run twice: at full resolution and with
an outer taper of 1′′. To both maps we ‘feather’ the single
dish SCUBA-2 (regridded) map to improve the recovery of
the total flux of the source and potentially improve sensitivity
to extended emission. The depth of the map is 40µJy beam−1,
increasing to 90µJy beam−1 after tapering. Final maps are
corrected for primary beam attenuation for analysis. The syn-
thesized beams are 0.40′′×0.38′′ (PA 23◦) and 1.01′′×0.98′′
(PA 112◦) in the feathered full resolution and 1′′ tapered maps

respectively.
To measure the integrated flux densities and sizes we

threshold the maps at 3σ, where σ is the root mean square
noise measured around the sources and sum the flux enclosed
by each 3σ contour. In the full resolution map there are three
distinct components: a, b and c. Integrated flux density un-
certainties are estimated from the root mean squared value,
scaled to the number of beams subtended by the 3σ contour.
The sizes of each source in the tapered map are measured as
the maximum width of the 3σ contour, with an uncertainty
δθ = 0.6×θbeam/SNR, where θbeam is the full width half max-
imum of the beam and SNR = 3.

Note that there is a discrepancy between the single dish
flux and the total flux measured in the ALMA map: ∆S850 =
2.9±1.1 mJy. Although this is not significant at the 3σ level,
we should discuss this potential ‘missing’ flux. First, it is
important to note that single dish flux densities in the sub-
millimeter can be statistically boosted; Geach et al. (2016)
measured the flux boosting as a function of signal-to-noise
ratio in the SCUBA-2 Cosmology Legacy Survey (where the
SCUBA-2 detection of this target originates), finding an aver-
age boosting of approximately 30% for SSA22-LAB01. The
array configuration allows us to recover emission on scales of
up to 5′′. It is unlikely that there is a 850µm emission com-
ponent on scales larger than this (40 pkpc at this redshift), but
given the sensitivity of our observations, it implied that, if
real, the missing submillimetre emission is extended on scales
of at least 3′′ (25 pkpc). One possibility is that the emission is
spread over a large number of faint clumps around the central
sources – an idea we explore later in the paper. Deeper ob-
servations with a slightly more compact array configuration
would be beneficial to address this.

2.2. Multi-Unit Spectroscopic Explorer
Integral field spectroscopy was performed with the Very Large
Telescope Multi Unit Spectroscopic Explorer (MUSE) instru-
ment. The observations were carried out under clear or pho-
tometric conditions, between November 2014 and Septem-
ber 2015. We used the extended blue setting, resulting
in a minimum wavelength of 4650Å. Each integration was
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1500 seconds, and the field was rotated by 90◦ between each
exposure in order to reduce fixed pattern noise from the in-
tegral field units (IFUs) and residual flat-field errors. Data
were reduced with the MUSE pipeline (version 1.0.5), follow-
ing standard procedures for bias subtraction, dark current re-
moval, flat-fielding, and basic calibration of the individual in-
tegrations. Each individual spectrum was fully post-processed
to output an image of the field of view, data cubes, and pixel
tables, which we examined individually. We computed shifts
between the individual exposures using standard centering
tools in IRAF. Finally, we used the MUSE_EXP_COMBINE
task to drizzle and stack all the individually reduced pixtables.

2.3. Hubble Space Telescope Imaging Spectrograph
The Hubble Space Telescope Imaging Spectrograph (STIS)
observations (project 9174, Chapman et al. 2004) used the
50CCD clear filter which provides a wide response in the op-
tical, with effective central wavelength 5850Å and full width
half maximum throughput 4410Å over a 52′′× 52′′ field-of-
view. Six exposures of SSA22-LAB01 were taken in ‘LOW-
SKY’ time for a total of 7020 seconds of integration. HST
Legacy Archive calibrated images were combined into a sin-
gle deep co-add with 0.1′′ pixels using the DRIZZLEPAC soft-
ware (version 2) from the Space Telescope Science Institute.
The 5σ sensitivity limit is 27.6 mag (Chapman et al. 2004).

2.4. Keck Multi-Object Spectrometer For Infra-Red
Exploration

K-band (1.92–2.30µm) spectroscopy of SSA22-LAB01 was
obtained on a single slit of a multislit mask observed dur-
ing science verification of the Multi-Object Spectrometer For
Infra-Red Exploration (MOSFIRE, Mclean et al. 2012) on the
W. M. Keck Observatory Keck 1 10m telescope. The slit
width was 0.7′′, resulting in a spectral resolving power of
R ∼ 3600. The total integration time was 5040 seconds, in
a sequence of 28 180s exposures using an ABAB nod pattern
with a nod amplitude of 3.0′′. The seeing during the observa-
tion was estimated to be 0.35′′ full width half maximum. The
data were reduced by the MOSFIRE Data Reduction Pipeline
(Steidel et al. 2014).

3. ANALYSIS & INTERPRETATION
In the following sections we analyse and interpret the ob-

servations, characterising the ALMA sources in the context
of the LAB environment. We then use a high resolution cos-
mological hydrodynamic simulation and radiative transfer to
develop a hypothesis about the role of the central submillime-
ter sources in contributing to the extended Lyα emission, pay-
ing particular attention to creating mock observations that can
be directly compared to the data, and determining whther sys-
tems resembling SSA22-LAB01 are expected in current mod-
els of galaxy formation.

3.1. Observations
At full (0.4′′) resolution we resolve three main components

that we label ‘a’, ‘b’ and ‘c’ within the SSA22-LAB01 (Figure
1). Component ‘a’ is the brightest submillimetre source, lo-
cated close to the geometric centre of the LAB and is 1′′ from
component ‘b’. Component ‘c’ is located 4.5′′ to the south-
east and is associated with strong stellar continuum emission,
with a precise redshift measured from [OIII] and Hβ lines,
z = 3.1000± 0.0003, placing it within the Lyα nebula (Kubo

et al. 2015). Components a+b are also coincident with stel-
lar continuum emission of complex, clumpy morphology. We
discuss this further below.

The total flux density of signal above the 3σ level in the
tapered map is S850 = 1.68± 0.06 mJy. Assuming cool dust
emission traces the dense ISM (Scoville et al. 2015), the cor-
responding total molecular gas mass is Mgas ≈ 4× 1010 M�
and the average molecular gas surface density is Σgas ≈
140 M� pc−2. If ΣSFR scales linearly with Σgas (Wong & Blitz
2002) we estimate that the submillimetre sources are form-
ing stars at rates of order 100 M� yr−1. We have poor con-
straints on the shape of the spectral energy distribution of
these sources, but we can estimate their integrated total in-
frared luminosities by assuming an appropriate range of tem-
plates describing the thermal dust emission of active galaxies.
We adopt the Dale & Helou (2002) set of templates, char-
acterised by a parameter α, describing the power law index
for the distribution of dust mass over heating by the inter-
stellar radation field dM(U) ∝ U−αdU , with most galaxies
falling within the range α = 1–2.5; we conservatively consider
this full range when estimating the total infrared luminosi-
ties of the sources. Redshifting to z = 3.1 and normalising to
the observed 850µm flux density, we estimate total infrared
(8–1000µm) luminosities of LIR ≈ (0.2 − 1.9)× 1012L� and
LIR ≈ (0.2 − 1.5)× 1012L� for for sources a+b and c respec-
tively. Assuming a star formation rate calibration following
Kennicutt & Evans (2012) these correspond to SFR ≈ 30–
280M� yr−1 and SFR≈ 25–220M� yr−1 respectively, consis-
tent with the ISM mass scaling value derived above.

The emergent luminosity of Lyα emission associated with
obscured star formation is LLyα = 0.05 fescLIR (Djikstra &
Westra 2010), under the assumption of Case B conditions and
where fesc is the escape fraction (of Lyα photons) from the
galaxy. This corresponds to LLyα ∼ fesc,Lyα1043−44 erg s−1 per
ALMA source, similar to the total Lyα luminosity of SSA22-
LAB01. From the models of Leitherer et al. (1999), the ioniz-
ing flux (ν = 200–912Å) scales like L200−912≈ SFR× fesc,UV×
1043 erg s−1 (for 100 Myr of continuous star formation, So-
lar metallicity and Salpeter IMF). Thus, for star formation
rates of order 100 M� yr−1 and modest high escape fractions,
the ALMA sources appear are viable ‘power sources’ for ex-
tended Lyα emission. The next question is, therefore, what
is the nature of the environment around these central star-
forming sources?

Like other giant LABs (e.g. Prescott et al. 2012), SSA22-
LAB01 is thought to trace a massive dark matter halo of order
Mh ≈ 1013M�; this is close to the mass where cold flows are
not expected to survive inside the virial radius at this epoch
(Dekel et al. 2009). Recently, moving mesh hydrodynamic
simulations suggest cold streams are assimilated into the hot
halo gas inside the virial radius even down to halo masses of
Mhalo ≈ 1011.5M� (Nelson et al. 2013), suggesting that cold
flows are not sufficient to explain the extended Lyα luminos-
ity of giant LABs. Following arguments out forward by Hayes
et al. (2011), Geach et al. (2014) and Beck et al. (2016), we
postulate that extended line emission in SSA22-LAB01 could
arise from Lyα photons generated by central star formation
in the submillimetre sources, escaping and resonantly scatter-
ing in neutral gas associated with a large ensemble of lower-
mass galaxies in the same potential (e.g. Cen & Zheng 2013;
Francis et al. 2013). This is consistent with recent spectropo-
larimetry observations of SSA22-LAB01 that favour a sce-
nario in which Lyα photons undergo long flights from cen-
tral sources before scattering in HI in the CGM (Hayes et al.
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Figure 2. Near-infrared spectrum of ALMA source c and companion ob-
tained with Keck MOSFIRE. The background image shows the two dimen-
sional spectrum, slightly smoothed for clarity. Strong atmospheric emission
lines are masked. The nod pattern employed results in a positive (red) and
negative (blue) signal in the co-added spectrum offset by 3′′. The one dimen-
sional spectra for each source reveal Hβ and [OIII] emission lines, with the
5007Å [OIII] line separated by 250 km s−1 between ALMA source ‘c’ and
S1, which are separated by an angular distance of 2.1′′ (17 pkpc).

2011; Beck et al. 2016, although cf. Trebitsch et al. 2016).
In Figure 1 we show the polarization vectors of Hayes et al.
(2011) that describe a circular pattern roughly centered on the
submillimeter sources.

The STIS imaging reveals many faint ( fλ ≈
10−19 erg s−1 cm−2 Å−1) clumps of UV emission surrounding
the submillimetre sources (Figure 1, Chapman et al. 2004;
Matsuda et al. 2007, Uchimoto et al. 2008, see also Prescott
et al. 2012). There is no spectroscopically confirmed redshift
for source a+b, and, unlike source c, it is not unambiguously
associated with a STIS counterpart. Instead, there are a
number of STIS clumps at (and around) the position of a+b,
and the optical colors of these are broadly consistent with a
z = 3.1 redshift. In addition, there is a possible HI absorption
feature in the Lyα spectrum at this location (Weijmans et
al. 2010; Geach et al. 2014); thus, source a+b is unlikely
to be a chance projection of a submillimetre source at a
different redshift. If some (a fraction are likely to be chance
projections) of the other faint STIS sources represent low
mass satellites of the ALMA sources, then the cold gas
associated with them could be responsible for scattering Lyα
photons emerging from the central active galaxies. A key
test is actually confirming ‘membership’ of the STIS sources,
and to this end we have obtained near-infrared spectroscopic
confirmation of one of these faint companion sources ‘S1’
(Figure 2), detecting the [OIII] line at z = 3.0968. S1 is 2.1′′
(17 pkpc) from ALMA source ‘c’ with a line-of-sight velocity
offset of just 250 km s−1. Although not a complete survey by
any means, this observation does support the view that the
central ALMA sources are accompanied by a population of
low-mass satellites.

With this empricial evidence in hand, we now consider
whether the same observations are predicted by galaxy for-
mation and evolution models. In particular, we run a zoomed
cosmological hydrodynamical simulation coupled with radia-
tive transfer schemes to produce mock observations that can
be directly compared to the data. The main objective is to
test whether systems similar to SSA22-LAB01 arise in cur-
rent galaxy formation schemes.

10 kpc 1 asec

Figure 3. Predicted ultraviolet and submillimetre emission of a Mh ≈
1013M� halo at z ≈ 3 from a hydrodynamic simulation with realistic radia-
tive transfer (§3.2). (left) predicted emission in the HST STIS 50CCD band
with zero noise. Contours show the predicted 850µm emission, logarithmi-
cally spaced at 0.25 dex, starting at 0.1µJy; (right) shows the same emission,
but as would be observed with an identical set-up to the real observations.
Background scaling of the mock HST STIS image and 1′′ tapered ALMA
contours are identical to Figure 1 (we only show the tapered contours for
clarity here). Only the brightest handful of neighbouring STIS sources are
detectable, with flux densities of fλ & 2× 10−20 erg s−1 cm−2 Å−1. Formally,
we detect five STIS sources above a 3σ detection threshold, which is similar
to the observations after considering contamination from projections (§3.3).

3.2. Simulations
We simulate the formation of a galaxy in a massive (Mh ≈

1013M�) halo (by z = 2) utilising a cosmological zoom tech-
nique with the hydrodynamics code GIZMO (Hopkins et
al. 2014). We employ a pressure-entropy formulation of
smoothed particle hydrodynamics, which conserves momen-
tum, energy, angular momentum, and entropy. We first run a
coarse large (144 Mpc3) dark matter-only simulation to iden-
tify a halo of interest. This simulation is run at a rela-
tively low mass resolution Mdm = 8.4× 108M�. At z = 2,
we select a massive (2.03× 1013 M�) halo, and re-simulate
the evolution of this halo at significantly higher resolution
(Feldmann et al. 2016), including baryons with particle mass
mbar = 2.7×105 M�. The initial conditions are generated with
the MUSIC code (Hahn et al. 2011) and the minimum bary-
onic, star and dark matter force softening lengths are, respec-
tively, 9, 21 and 142 proper parsecs at z = 2.

Gas cools using a cooling curve that includes both atomic
and molecular line emission, with the neutral ISM broken into
atomic and molecular components following an analytic al-
gorithm describing the molecular fraction in a cloud based
on the gas surface density and metallicity (Krumholz, Mc-
Kee & Tumlinson 2009). Star formation occurs in molecular
gas and follows a volumetric relation ρ̇? = ρmol/tff, where ρmol
is the volume density of molecular gas and tff is the freefall
time. Star formation is restricted to gas that is locally self-
gravitating following the algorithms of Hopkins, Narayanan
& Murray, 2013 [MNRAS,432, 26 57]. Once stars have
formed, they impact the ISM via a number of feedback chan-
nels. In particular, we include models for momentum deposi-
tion by stellar radiation and supernovae, photoheating of HII
regions, and stellar winds (see Hopkins et al. 2014, MNRAS,
445, 581 for details). GIZMO tracks 11 metal species (H, He,
C, N, O, Ne, Mg, Si, S, Ca, and Fe) with yields from Type
1a and Type II supernova following Iwamoto et al. (1999) and
Woosley & Weaver (1995).

To model the ALMA and STIS observations we employ the
dust radiative transfer code POWDERDAY which computes the
stellar spectral energy distributions (SEDs) of the star parti-
cles (constrained by their ages and metallicities) and propa-
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Figure 4. Predicted surface brightness profiles of extended Lyα emis-
sion compared to observations. The first panel shows the MUSE ob-
servation of SSA22-LAB01 with an isophotal contour at µLyα = 2.2 ×
10−18 erg s−1 cm−2 arcsec−2 used to originally classify LABs (Matsuda et al.
2004). Additional panels show, at the same scale, the Lyα surface bright-
ness maps predicted by our simulation (no noise has been added), smoothed
with a Gaussian beam of FWHM 1′′ to mimic ground-based seeing. These
maps are generated by projecting the simulation volume along each of the
six faces of the cube. The central star-forming galaxies (analogous to the
ALMA sources) are at the center of the cube, and so it is clear that large scale
scattering in the halo substructure can form LABs that are highly asymmetric
about the ‘power’ sources, and produce emission line halos with a range of
morphology. Note also the fainter extended emission predicted by the model
on scales larger then the single isophote shown.

gates this radiation through the dusty ISM. The gas particles
are projected onto an adaptive grid with an octree-like mem-
ory structure (using YT, Turk et al. 2011, ApJS, 192, 9), and
the dust mass is assumed to be a constant fraction (40%) of
the total metal mass in a given cell (Dwek et al. 1998, 501,
643, D. Watson, 2011, A&A, 533, A16). Photons are emit-
ted in a Monte Carlo fashion and absorbed, re-radiated, and
scattered by dust; this process is iterated upon until the dust
temperature has converged. The stellar SEDs are calculated
at run time for each stellar particle utilising FSPS (Conroy &
Gunn 2010). We employ the Padova iscochrones and assume
a Kroupa IMF. The dust radiative transfer employs HYPERION
(Robitaille et al. 2011). We assume a Weingartner & Draine
(2001) dust size distribution, with RV = 3.15. To create mock
observations we consider the observed frame 850µm and op-
tical emission predicted by POWDERDAY and HYPERION pro-
jected onto a celestial grid at the position of SSA22-LAB01.

To simulate the ALMA observations we use the CASA task
SIMALMA, setting the simulation parameters to match the real
observations (§2.1), including the same array configuration.
The resulting maps have nearly identical synthesized beam
and 1σ noise as the data. For the STIS imaging we convolve
the predicted observed frame UV-through-optical emission
with the 50CCD throughput curve to generate single images
projected along the same view angles as the 850-µm images.
These images are then convolved with the STIS point spread
function and gridded to an identical pixel scale as the obser-
vations. Finally, we create a noise image by removing >1.5σ
features from the real STIS image and replace those pixels
with values randomly drawn from the remainder of the pix-
els in the image. The noise-free, PSF-convolved flux image is
then added to the noise image to create the mock observation.

Finally, we consider Lyα radiative transfer of centrally gen-
erated photons through the simulation volume. We use the
code TLAC (Gronke et al. 2014, 2015) with the default core
skipping parameter x = 3. The central 400 pkpc of simu-
lation volume is interpolated onto a regular grid, and we
treat two central star-forming galaxies (SFRs 189 M� yr−1 and
115 M� yr−1) as sources of Lyα photons. To compute the Lyα
luminosity emitted by the cells, we use the relation between
star formation rate and Lyα luminosity (applicable to solar
metallicity and a Kroupa IMF)

LLyα/ergs−1 = 1.87×1042× (SFR/M� yr−1) . (1)

The photons are emitted from a random point inside the cor-
responding cell with an emission frequency drawn from a dis-
tribution depending on the thermal velocity of the gas in the
cell (Gronke et al. 2014, 2015) using the ‘peeling’ algorithm
(Yusef et al. 1984; Zheng et al. 2002; Laursen 2010). We fol-
low the prescriptions of Laursen (2010) for the Small Mag-
ellanic Cloud (Pei et al. 1992; Weingartner & Draine 2001;
Gnedin et al. 2008) when calculating the dust content in the
grid, and a full description of this method can be found in that
work. We compute an effective dust density nd at every cell
as

nd = (nHI + fionnHII)(Z/〈ZSMC〉), (2)

where nHI and nHII are the neutral and ionised hydrogen densi-
ties respectively at every cell. Z and 〈ZSMC〉 denote the metal-
licity at every cell and the SMC average respectively, and
fion accounts for the dust content in the ionised gas (Laursen
2010). We assume that fion is 1% and note that 〈ZSMC〉 is 0.6
dex below the solar value.
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3.3. Comparing data and simulations
Figure 3 shows the synthetic ALMA and STIS observa-

tions. The halo contains two main star-forming galaxies
(189 and 115 M� yr−1), and the synthetic observations re-
veal strong similarities to the data: both have submillime-
ter emission, but only one of the galaxies has a flux den-
sity high enough to be detected in our ALMA map, with
S850 ≈ 0.5 mJy, within a factor of two of the observations.
This central ALMA-detected source is surrounded by sev-
eral STIS-detectable clumps of similar flux to those ob-
served. Formally, we detect five sources at >3σ in the
synthetic STIS image27, with flux densities fλ ≈ (0.2–4)×
10−19 erg s−1 cm−2 Å−1, compared to eight sources with fλ ≈
(0.2–2)×10−19 erg s−1 cm−2 Å−1 over the same area in the real
image. Based on the detection of sources over the wider STIS
image, in a random aperture of equivalent solid angle, we ex-
pect 4±1 sources in the same flux range by chance, so the
predicted abundance of STIS sources in the simulation is in
good agreement with the data. In the simulation, these clumps
are the brightest of a population of star-forming sub-halos
(that are apparent in the left panel of Figure 3) that ‘swarm’
the central star-forming galaxies galaxy, bombarding it over a
∼1 Gyr period in a phase of hierarchical growth that accompa-
nies the accretion of recycled gas previously heated by stellar
feedback at an earlier epoch (Narayanan et al. 2015).

So the simulation can broadly reproduce the ALMA and
STIS observations. What of the extended Lyα emission?
Considering the two main star-forming galaxies sources as
Lyα emitters (with Lyα luminosities scaled from their SFRs,
Equation 1), we find that 58% of centrally generated photons
escape the simulation box, and 16% of those scatter at least
once in HI in the CGM. The majority (77%) of the HI mass in
the central 400 pkpc of the simulation volume is tied to sub-
halos, and so it follows that the majority of the Lyα scattering
occurs in and around satellites, which can be treated as cold
clumps within the hot halo gas. Figure 4 shows the projected
Lyα surface brightness maps of the simulated halo compared
to the latest integral field observations from MUSE. Resonant
scattering in the satellite population gives rise to extended
Lyα emission with surface brightness distributions similar to
observed LABs (µLyα ≈ 10−18 erg s−1 cm−2 arcsec−2). The ob-
served Lyα surface brightness and morphology is highly ori-
entation dependent Lyα sources – the emission need not be
symmetric about the central sources that are the source of the
Lyα photons. This is simiular to the situation in real LABs,
for example, the next largest LAB in SSA22, SSA22-LAB02
contains an x-ray luminous AGN (Geach et al. 2009; Alexan-
der et al. 2016) that is significantly offset from the peak and
geometric center of the LAB. This has important implications
for correctly identifying potential luminous galaxy counter-
parts to LABs, the apparent absence of which in some systems
has previously been argued in favour of cold mode acceretion
(e.g. Nilsson et al. 2006, but see Prescott et al. 2015).

It is interesting that this cosmological simulation can
broadly reproduce a wide range of the observed properties of
SSA22-LAB01 with no special tuning, and moreover, with a
single process giving rise to the extended Lyα emission. We
do not conclude that scattering is the only process at work, but
argue that it is likely to be a dominant one.

27 We detect sources using SEXTRACTOR version 2.19.5 (Bertin &
Arnouts 1996) with a detection threshold of 3 continguous pixels above 3×
the r.m.s. in the local background. No filtering is applied, and we use a back
size of 32 pixels.

4. SUMMARY
It is uncontroversial that the intergalactic medium is rich in

cool baryons at z ≈ 3, and recent observations have demon-
strated how gas in the cosmic web can be detected in Lyα
emission on scales much larger than 100 pkpc via illumination
by nearby quasars (Cantalupo et al. 2014; Martin et al. 2015).
Deep stacking experiments have also demonstrated that dif-
fuse, extended Lyα emission appears to be a generic feature
within 100 pkpc of star-forming galaxies at high-redshift, po-
tentially linked to scattering in a clumpy CGM (Steidel et al.
2011). However it has not been clear how cold gas is actu-
ally distributed within dark matter haloes and how it relates
to the growth of central galaxies. Our observations and self-
consistent simulations support a scenario in which the major-
ity of neutral gas within the massive halo hosting the submil-
limetre sources in SSA22-LAB01 is associated with satellites,
the majority of these are beyond the reach of direct detec-
tion in the optical. Nevertheless, resonant scattering of Lyα
photons through the crowded halo environment is sufficient to
indirectly reveal the population. We suggest that deep, high
resolution Lyα observations offer a route to mapping the dis-
tribution and kinematics of the satellite populations – or, more
generally, sub-structure – of distant massive haloes.
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Steidel, C. C., Bogosavljević, M., Shapley, A. E., Kollmeier, J. A., Reddy, N.

A., Erb, D. K., Pettini, M. 2011, ApJ, 736, 160
Steidel, C. C., et al. 2014, ApJ, 795, 165
Taniguchi, Y., Shioya, Y. 2000, ApJ, 532, L13
Weijmans, A-M., Bower, R. G., Geach, J. E., Swinbank, A. M., Wilman, R.

J., de Zeeuw, P. T., Morris, S. L. 2010, MNRAS, 402, 2245
Weingartner, J. C., Draine, B. T. 2001, ApJ, 548, 296
Wong, T., Blitz, L. 2002, ApJ, 569, 157
Yang, Y., et al. 2012, ApJ, 744, 178
Yusef-Zadeh, F., Morris, M., White, R. L. 1984, ApJ, 278, 186
Zheng, Z., Miralda-Escudé, J. 2002, ApJ, 578, 33


