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ABSTRACT

We investigate the stellar mass and baryonic mass Tully-Fisher relations (TFRs) of massive star-forming disk
galaxies at redshift z ∼ 2.3 and z ∼ 0.9 as part of the KMOS3D integral field spectroscopy survey. Our
spatially resolved data allow reliable modelling of individual galaxies, including the effect of pressure support
on the inferred gravitational potential. At fixed circular velocity, we find higher baryonic masses and similar
stellar masses at z ∼ 2.3 as compared to z ∼ 0.9. Together with the decreasing gas-to-stellar mass ratios with
decreasing redshift, this implies that the contribution of dark matter to the dynamical mass at the galaxy scale
increases towards lower redshift. A comparison to local relations reveals a negative evolution of the stellar and
baryonic TFR zero-points from z = 0 to z ∼ 0.9, no evolution of the stellar TFR zero-point from z ∼ 0.9 to
z ∼ 2.3, but a positive evolution of the baryonic TFR zero-point from z ∼ 0.9 to z ∼ 2.3. We discuss a toy
model of disk galaxy evolution to explain the observed, non-monotonic TFR evolution, taking into account the
empirically motivated redshift dependencies of galactic gas fractions, and of the relative amount of baryons to
dark matter on the galaxy and halo scales.
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1. INTRODUCTION

State-of-the-art cosmological simulations in a ΛCDM
framework indicate that three main mechanisms regulate the
growth of galaxies, namely the accretion of baryons, the con-
version of gas into stars, and feedback. While gas settles down
at the centers of growing dark matter (DM) haloes, cools and
forms stars, it keeps in its angular momentum an imprint of the
dark halo. Conservation of the net specific angular momen-
tum, as suggested by analytical models of disk galaxy for-
mation (e.g. Fall & Efstathiou 1980; Dalcanton et al. 1997;
Mo et al. 1998; Dutton et al. 2007; Somerville et al. 2008),
should result in a significant fraction of disk-like systems.
In fact, they make up a substantial fraction of the observed
galaxy population at high redshift (1 . z . 3; Labbé et al.
2003; Förster Schreiber et al. 2006, 2009; Genzel et al. 2006,

Based on observations collected at the European Organisation for As-
tronomical Research in the Southern Hemisphere under ESO programs
092.A-0091, 093.A-0079, 094.A-0217, 095.A-0047, and 096.A-0025.

2014b; Law et al. 2009; Epinat et al. 2009, 2012; Jones et al.
2010; Miller et al. 2012; Wisnioski et al. 2015; Stott et al.
2016) and in the local Universe (e.g. Blanton & Moustakas
2009, and references therein). The detailed physical pro-
cesses during baryon accretion from the halo scales to the
galactic scales are, however, complex, and angular momen-
tum conservation might not be straightforward to achieve
(e.g. Danovich et al. 2015). To produce disk-like systems in
numerical simulations, feedback from massive stars and/or
active galactic nuclei is needed to prevent excessive star
formation and to balance the angular momentum distri-
bution of the star-forming gas phase (e.g. Governato et al.
2007; Scannapieco et al. 2009, 2012; Agertz et al. 2011;
Brook et al. 2012; Aumer et al. 2013; Hopkins et al. 2014;
Marinacci et al. 2014; Übler et al. 2014; Genel et al. 2015).
Despite the physical complexity and the diverse formation
histories of individual galaxies, local disk galaxies exhibit on
average a tight relationship between their rotation velocity
V and their luminosity L or mass M, namely the Tully-
Fisher relation (TFR; Tully & Fisher 1977). In its mass-
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based form, the TFR is commonly expressed as M ∝ Va ,
or log(M) = a · log(V ) + b, where a is the slope, and b is the
zero-point offset.

Considering a spherical DM halo, its mass Mh and virial
velocity Vh are related in a way which resembles the functional
form of the TFR (Mo et al. 1998):

Mh =

V 3
h

10G · H (z)
, (1)

where H (z) is the redshift-dependent Hubble parameter, and
G is the gravitational constant. Following the mappings be-
tween baryons and DM outlined in Mo et al. (1998), one can
derive a corresponding relation for baryonic matter. This sug-
gests that the origin of the TFR and its evolution lie within
the basic relations governing the structural assembly of DM
haloes. Assuming a constant baryonic disk mass fraction,
constant galactic DM fraction, constant halo spin parameter,
and conservation of the net specific angular momentum of the
DM halo and the central galaxy, the redshift evolution of this
corresponding baryonic relation is controlled solely by H (z),
e.g.

Mbar ∝
v

3
circ(Re )

H (z)
, (2)

where Mbar is the total baryonic mass of the galaxy, and
vcirc(Re ) is the circular velocity, here at the effective radius
Re . This relation has a constant slope and an evolving zero-
point in log-log space, where disks at fixed rotation velocity
are less massive at higher redshift.

In the local Universe, rotation curves of disk galaxies are
apparently generally dominated by DM already at a few times
the disc scale length, and continue to be flat or rising out
to several tens of kpc (see e.g. reviews by Faber & Gallagher
1979; Sofue & Rubin 2001; and Catinella et al. 2006). There-
fore, the local TFR enables a unique approach to relate the
baryonic galaxy mass, which is an observable once a mass-
to-light conversion is assumed, to the potential of the dark
halo. Although the luminosity-based TFR is more directly
accessible, relations based on mass constitute a physically
more fundamental approach since the amount of light mea-
sured from the underlying stellar population is a function of
passband, systematically affecting the slope of the TFR (e.g.
Verheijen 1997, 2001; Bell & de Jong 2001; Pizagno et al.
2007; Courteau et al. 2007; McGaugh & Schombert 2015).
The most fundamental relation is given by the baryonic mass
TFR (bTFR). It places galaxies over several decades in mass
onto a single relation, whereas there appears to be a break
in the slope of the stellar mass TFR (sTFR) for low mass
galaxies (McGaugh et al. 2000; McGaugh 2005).

Observed slopes vary mostly between 3 . a . 4.5 for the
local sTFR (e.g. Bell & de Jong 2001; Pizagno et al. 2005;
Avila-Reese et al. 2008; Williams et al. 2010; Gurovich et al.
2010; Torres-Flores et al. 2011; Reyes et al. 2011) and be-
tween 3 . a . 4 for the local bTFR (e.g. McGaugh et al.
2000; McGaugh 2005; Trachternach et al. 2009; Stark et al.

2009; Zaritsky et al. 2014; McGaugh & Schombert 2015;
Lelli et al. 2016; Bradford et al. 2016; Papastergis et al.
2016). It should be noted that the small scatter of local
TFRs can be partly associated to the very efficient selection
of undisturbed spiral galaxies (e.g. Kannappan et al. 2002;
see also Courteau et al. 2007; Lelli et al. 2016, for discus-
sions of local TFR scatter). Variations in the observational
results of low-z studies can be attributed to different sample
sizes, selection bias, varying data quality, statistical methods,
conversions from L to M, or to the adopted measure of V

(Courteau et al. 2014; for a detailed discussion regarding the
bTFR see Bradford et al. 2016).

Any such discrepancy becomes more substantial when go-
ing to higher redshift where measurements are more chal-
lenging and the observed scatter of the TFR increases with
respect to local relations (Miller et al. 2012). The latter
is partly attributed to ongoing kinematic and morphologi-
cal transitions (Kassin et al. 2007; Puech et al. 2008, 2010;
Covington et al. 2010; Miller et al. 2013; Simons et al. 2016),
possibly indicating non-equilibrium states. Another compli-
cation for comparing high-z studies to local TFRs arises from
the inherently different nature of the so-called disk galaxies
at high redshift: although of disk-like structure and rota-
tionally supported, they are significantly more “turbulent”,
geometrically thicker, and clumpier than local disk galaxies
(Förster Schreiber et al. 2006, 2009, 2011a,b; Genzel et al.
2006, 2011; Elmegreen & Elmegreen 2006; Elmegreen et al.
2007; Kassin et al. 2007, 2012; Epinat et al. 2009, 2012;
Law et al. 2009, 2012; Jones et al. 2010; Nelson et al. 2012;
Newman et al. 2013; Wisnioski et al. 2015; Tacchella et al.
2015b,a).

Notwithstanding the challenges outlined above, studies of
TFR evolution provide unique insights into the cosmic evo-
lution of the relationship between disk galaxies and their DM
haloes. From Equation (2) it would be expected that the zero-
point evolution of the TFR is governed exclusively by H (z).
If a deviating TFR evolution is observed this might point out
the importance of physical processes which are not captured
by this basic equation. This could be due to e.g. an imbalance
in the accretion histories of DM and baryons, or the imprint
of strong responses from DM to the formation of the central
galaxy. This leads to a varying contribution from the galaxy
to the innermost halo potential. Observations of the TFR
over cosmic time are thus a sensitive testbed for theoretical
models of the concurrent formation and evolution of galaxies
and their DM haloes.

Despite the advent of novel instrumentation and multi-
plexing capabilities, there is considerable tension in the
literature regarding the empirical evolution of the TFR
zero-points with cosmic time. Several authors find no or
only weak zero-point evolution of the sTFR up to red-
shifts of z ∼ 1.7 (Conselice et al. 2005; Kassin et al. 2007;
Miller et al. 2011, 2012; Contini et al. 2016; Di Teodoro et al.
2016; Molina et al. 2017; Pelliccia et al. 2017), while others
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find a negative zero-point evolution up to redshifts of z ∼ 3
(Puech et al. 2008; Cresci et al. 2009; Gnerucci et al. 2011;
Swinbank et al. 2012; Price et al. 2016; Tiley et al. 2016;
Straatman et al. 2017). Similarly for the less-studied high−z

bTFR, Puech et al. (2010) find no indication of zero-point
evolution since z ∼ 0.6, while Price et al. (2016) find a posi-
tive evolution between lower-z galaxies and their z ∼ 2 sam-
ple. There are indications that varying strictness in mor-
phological or kinematic selections can explain these conflict-
ing results (Miller et al. 2013; Tiley et al. 2016). The work
by Vergani et al. (2012) demonstrates that also the assumed
slope of the relation, which is usually adopted from a local
TFR in high-z studies, can become relevant for the debate of
zero-point evolution (see also Straatman et al. 2017).

A common derivation of the measured quantities as well as
similar statistical methods and sample selection are crucial to
any study which aims at comparing different results and study-
ing the TFR evolution with cosmic time (e.g. Courteau et al.
2014; Bradford et al. 2016). Ideally, spatially well resolved
rotation curves should be used which display a peak or flat-
tening. Such a sample would provide an important reference
frame for studying the effects of baryonic mass assembly
on the morphology and rotational support of disk-like sys-
tems, for investigating the evolution of rotationally supported
galaxies as a response to the structural growth of the parent
DM halo, and for comparisons with cosmological models of
galaxy evolution.

In this paper, we exploit spatially resolved integral field
spectroscopic (IFS) observations of 240 rotation-dominated
disk galaxies from the KMOS3D survey (Wisnioski et al.
2015, hereafter W15) to study the evolution of the sTFR
and bTFR between redshifts z = 2.6 and z = 0.6. The wide
redshift coverage of the survey, together with its high qual-
ity data, allow for a unique investigation of the evolution of
the TFR during the peak epoch of cosmic star formation rate
density, where coherent data processing and analysis are en-
sured. In Section 2 we describe our data and sample selection.
We present the KMOS3D TFR in Section 3, together with a
discussion of other selected high−z TFRs. In Section 4 we
discuss the observed TFR evolution, we set it in the context to
local observations, and we discuss possible sources of uncer-
tainties. In Section 5 we constrain a theoretical toy model to
place our observations in a cosmological context. Section 6
summarizes our work.

Throughout, we adopt a Chabrier (2003) initial mass
function (IMF) and a flat ΛCDM cosmology with
H0 = 70 km s−1 Mpc−1, ΩΛ = 0.7, and Ωm = 0.3.

2. DATA AND SAMPLE SELECTION

The contradictory findings about the evolution of the mass-
based TFR in the literature motivate a careful sample selection
at high redshift. In this work we concentrate on the evolution
of the TFR for undisturbed disk galaxies. Galaxies are eligible

for such a study if the observed kinematics trace the central
potential of the parent halo. To ensure a suitable sample we
perform several selection steps which are described in the
following paragraphs.

2.1. The KMOS3D survey

This work is based on the first three years of obser-
vations of KMOS3D, a multi-year near-infrared (near-IR)
IFS survey of more than 600 mass-selected star-forming
galaxies (SFGs) at 0.6 . z . 2.6 with the K−band
Multi Object Spectrograph (KMOS; Sharples et al. 2013)
on the Very Large Telescope. The 24 integral field units
of KMOS allow for efficient spatially resolved observations
in the near-IR passbands Y J, H , and K , facilitating high-
z rest-frame emission line surveys of unprecedented sam-
ple size. The KMOS3D survey and data reduction are de-
scribed in detail by W15, and we here summarize the key
features. The KMOS3D galaxies are selected from the 3D-
HST survey, a Hubble Space Telescope Treasury Program
(Brammer et al. 2012; Skelton et al. 2014; Momcheva et al.
2016). 3D-HST provides R ∼ 100 near-IR grism spec-
tra, optical to 8 µm photometric catalogues, and spectro-
scopic, grism, and/or photometric redshifts for all sources.
The redshift information is complemented by high-resolution
Wide Field Camera 3 (WFC3) near-IR imaging from the
CANDELS survey (Grogin et al. 2011; Koekemoer et al.
2011; van der Wel et al. 2012), as well as by further multi-
wavelength coverage of our target fields GOODS-S, COS-
MOS, and UDS, through Spitzer/MIPS and Herschel/PACS
photometry (e.g. Lutz et al. 2011; Magnelli et al. 2013;
Whitaker et al. 2014, and references therein). Since we do not
apply selection cuts other than a magnitude cut of Ks . 23
and a stellar mass cut of log(M∗ [M⊙]) & 9.2, together with
OH-avoidance around the survey’s main target emission lines
Hα+[Nii], the KMOS3D sample will provide a reference for
galaxy kinematics and Hα properties of high−z SFGs over a
wide range in stellar mass and star formation rate (SFR). The
emphasis of the first observing periods has been on the more
massive galaxies, as well as on Y J− and K−band targets, i.e.
galaxies at z ∼ 0.9 and z ∼ 2.3, respectively. Deep average
integration times of 5.5, 7.0, 10.5 h in Y J, H,K , respectively,
ensure a detection rate of more than 75 per cent, including
also quiescent galaxies.

The results presented in the remainder of this paper build on
the KMOS3D sample as of January 2016, with 536 observed
galaxies. Of these, 316 are detected in, and have spatially
resolved, Hα emission free from skyline contamination, from
which two-dimensional velocity and dispersion maps are pro-
duced. Examples of those are shown in the work by W15 and
Wuyts et al. (2016, hereafter W16).

2.2. Masses and star-formation rates

The derivation of stellar masses M∗ uses stellar population
synthesis models by Bruzual & Charlot (2003) to model the
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spectral energy distribution of each galaxy. Extinction, star
formation histories (SFHs), and a fixed solar metallicity are
incorporated into the models as described by Wuyts et al.
(2011).

SFRs are obtained from the ladder of SFR indicators intro-
duced by Wuyts et al. (2011): if Herschel/PACS 60− 160µm
and/or Spitzer/MIPS 24µm observations were available, the
SFRs were computed from the observed UV and IR luminosi-
ties. Otherwise, SFRs were derived from stellar population
synthesis modelling of the observed broadband optical to IR
spectral energy distributions.

Gas masses are obtained from the scaling relations by
Tacconi et al. (2017), which use the combined data of molec-
ular gas (Mgas,mol) and dust-inferred gas masses of SFGs be-
tween 0 < z < 4 to derive a relation for the depletion time
tdepl ≡ Mgas,mol/SFR. It is expressed as a function of red-
shift, main sequence offset, stellar mass, and size. Although
the contribution of atomic gas to the baryonic mass within
1− 3 Re is assumed to be negligible at z ∼ 1− 3, the inferred
gas masses correspond to lower limits (Genzel et al. 2015).

Following Burkert et al. (2016), we adopt uncertainties of
0.15 dex for stellar masses, and 0.20 dex for gas masses.
This translates into an average uncertainty of ∼ 0.15 dex for
baryonic masses (see § 4.3.1 for a discussion).

2.3. Dynamical modelling

W16 use the two-dimensional velocity and velocity disper-
sion fields as observed in Hα to construct dynamical models
for selected galaxies. The modelling procedure is described
in detail by W16, where examples of velocity fields, velocity
and dispersion profiles, and 1D fits can also be found (see
also Figure 1). In brief, radial velocity and dispersion pro-
files are constructed from 0.′′8 diameter circular apertures
along the kinematic major axis using linefit (Davies et al.
2009), where spectral resolution is taken into account. A dy-
namical mass modelling is performed by fitting the extracted
kinematic profiles simultaneously in observed space using an
updated version of dysmal (Cresci et al. 2009; Davies et al.
2011). The free model parameters are the dynamical mass
Mdyn and the intrinsic velocity dispersionσ0. The inclination
i and effective radius Re are independently constrained from
galfit (Peng et al. 2010) models to the CANDELS H-band
imaging by HST presented by van der Wel et al. (2012). The
inclination is computed as cos(i) = [(q2 − q2

0 )/(1 − q2
0 )]1/2.

Here, q = b/a is the axial ratio, and q0 = 0.25 is the assumed
ratio of scale height to scale length, representing the intrinsic
thickness of the disk. The width of the point spread function
(PSF) is determined from the average PSF during observa-
tions for each galaxy. The mass model used in the fitting
procedure is a thick exponential disk, following Noordermeer
(2008), with a Sérsic index of nS = 1. We note that the peak
rotation velocity of a thick exponential disk is about 3 to 8
per cent lower than that of a Freeman disk (Freeman 1970).
For a general comparison of observed and modelled rotation

Figure 1. Examples of galaxies from the sample modelled by W16
which do, or do not, pass our TFR selection criteria (§ 2.4). From
left to right: surface brightness distribution in the WFC3 H−band,
with blue ellipses indicating the galfit effective radius, and grey
dashed lines marking the field of view of the KMOS observations;
Hα velocity field, with circles marking the extracted pseudo slit; the
observed (black data points with errors) and modelled (red lines) 1D
velocity and velocity dispersion profiles along the kinematic major
axis, with vertical dotted grey lines marking one and two effective
radii. More examples can be found in Figure 3 by W16. The upper
two rows show galaxies which pass our selection criteria for the TFR
sample. The third row shows a galaxy which is rejected from the
TFR sample because it is likely influenced by a neighboring object,
based on projected distance, redshifts, and stellar mass ratio. The
bottom row shows a galaxy which is rejected from the TFR sample
because it is unclear if the maximum velocity is covered by the
observations.

velocities and dispersions, we refer the reader to W16.
The merit of the W16 modelling procedure includes the

coupled treatment of velocity and velocity dispersion in terms
of beam-smearing effects and pressure support. The latter is
of particular importance for our study since high-z galaxies
have a non-negligible contribution to their dynamical support
from turbulent motions (Förster Schreiber et al. 2006, 2009;
Genzel et al. 2006, 2008, 2014a; Kassin et al. 2007, 2012;
Cresci et al. 2009; Law et al. 2009; Gnerucci et al. 2011;
Epinat et al. 2012; Swinbank et al. 2012; Wisnioski et al.
2012, 2015; Jones et al. 2013; Newman et al. 2013). The re-
sulting pressure compensates part of the gravitational force,
leading to a circular velocity which is larger than the rotation
velocity vrot alone:

vcirc(r)2
= vrot(r)2

+ 2σ2
0

r

Rd

, (3)

where Rd is the disk scale length (Burkert et al. 2010; see also
Burkert et al. 2016; Wuyts et al. 2016; Genzel et al. 2017;
Lang et al. 2017).

2.4. Sample selection

We start our investigation with a parent sample of 240
KMOS3D galaxies selected and modelled by W16. The sam-
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ple definition is described in detail by W16, and we briefly
summarize the main selection criteria here: (i) galaxies ex-
hibit a continuous velocity gradient along a single axis, the
‘kinematic major axis’; (ii) their photometric major axis as
determined from the CANDELS WFC3 H-band imaging and
kinematic major axis are in agreement within 40 degrees; (iii)
they have a signal-to-noise ratio of S/N & 5; (iv) they sample
a parameter space along the main sequence of star forming
galaxies (MS) with stellar masses of M∗ & 6.3 × 109 M⊙ ,
specific star formation rates of sSFR & 0.7/tHubble, and ef-
fective radii of Re & 2 kpc. This sample further excludes
galaxies with signs of major merger activity based on their
morphology and/or kinematics.

For our Tully-Fisher analysis we undertake a further de-
tailed examination of the W16 parent sample. The primary
selection step is based on the position-velocity diagrams and
on the observed and modelled one-dimensional kinematic
profiles of the galaxies. Through inspection of the diagrams
and profiles we ensure that the peak rotation velocity is well
constrained, based on the observed flattening or turnover in
the rotation curve and the coincidence of the dispersion peak
with the position of the steepest velocity gradient. The re-
quirement of detecting the maximum velocity is the selection
step with the largest effect on sample size, leaving us with
149 targets. The galaxy shown in the fourth row of Fig-
ure 1 is excluded from the TFR sample based on this latter
requirement.

To single out rotation-dominated systems for our purpose,
we next perform a cut of vrot,max/σ0 >

√
4.4, based on the

properties of the modelled galaxy (see also e.g. Tiley et al.
2016). Our cut removes ten more galaxies where the contri-
bution of turbulent motions at the radius of maximum rotation
velocity, which is approximately at r = 2.2 Rd , to the dy-
namical support is higher than the contribution from ordered
rotation (cf. Equation (3)).

We exclude four more galaxies with close neighbours be-
cause their kinematics might be influenced by the neigh-
bouring objects. These objects have projected distances of
< 20 kpc, spectroscopic redshift separations of < 300 km/s,
and mass ratios of > 1 : 5, based on the 3D-HST catalogue.
One of the dismissed galaxies is shown in the third row of
Figure 1.

After applying the above cuts, our refined TFR sample
contains 135 galaxies, with 65, 24, 46 targets in the Y J, H,K

passbands with mean redshifts of z ∼ 0.9, 1.5, 2.3, respec-
tively.

If not stated otherwise, we adopt the maximum of the mod-
elled circular velocity, vcirc,max ≡ vcirc, as the rotation velocity
measure for our Tully-Fisher analysis. For associated uncer-
tainties, see § 4.3.2. We use an expression for the peak veloc-
ity because there is strong evidence that high-z rotation curves
of massive star forming disk galaxies exhibit on average an
outer fall-off, i.e. do not posses a ‘flat’ part (van Dokkum et al.
2015; Genzel et al. 2017; Lang et al. 2017). This is partly due

 resolved KMOS3D galaxies ("first order", N=316)
 S.Wuyts+2016 modelled galaxies (N=240)
 sample based on ∆MS, ∆M−R, inc (N=173)
 TFR sample (N=135)

Figure 2. A ‘first order’ sTFR of all detected and resolved
KMOS3D galaxies without skyline contamination at the position of
Hα, where vcirc is computed from the observed maximal velocity
difference and from the intrinsic velocity dispersion as measured
from the outer disk region, after corrections for beam-smearing and
inclination (see W15). The sample of galaxies which have been
dynamically modelled by W16 is shown in black. In orange, we
indicate a subsample of this latter sample based only on cuts in MS
offset (±0.6 dex), mass-radius relation offset (±0.3 dex), and incli-
nation (0.5 ≤ sin(i) ≤ 0.98). In blue we show our final TFR sample
as obtained from the selection steps outlined in § 2.4.

to the contribution from turbulent motions to the dynamical
support of the disk, and partly due to baryons dominating
the mass budget on the galaxy scale at high redshift (see also
van Dokkum et al. 2015; Stott et al. 2016; Wuyts et al. 2016;
Price et al. 2016; Alcorn et al. 2016; Pelliccia et al. 2017). A
disk model with flattening or rising rotation curves as the
‘arctan model’, which is known to be an adequate model for
local disk galaxies (e.g. Courteau 1997), might therefore be a
less appropriate choice for high-z galaxies.

To visualize the impact of our sample selection we show
in Figure 2 a ‘first order’ sTFR of all detected and resolved
KMOS3D galaxies. Here, vcirc is computed from the observed
maximal velocity difference and from the intrinsic velocity
dispersion as measured from the outer disk region, after cor-
rections for beam-smearing and inclination, as detailed in
Appendix A.2 of Burkert et al. (2016). For simplicity, we
assume in computing vcirc for this figure that the observed
maximal velocity difference is measured at r = 2.2Rd , but
we emphasize that, in contrast to the modelled circular veloc-
ity, this is not necessarily the case. We indicate our parent
sample of modelled galaxies by W16 in black, and our final
TFR sample in blue. For reference, we also show in orange
a subsample of the selection by W16 which is only based
on cuts in MS offset (±0.6 dex), mass-radius relation offset
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(±0.3 dex), and inclination (0.5 ≤ sin(i) ≤ 0.98). We em-
phasize that the assessment of recovering the true maximum
rotation velocity is not taken into account for such an objec-
tively selected sample. We discuss in Appendix A in more
detail the effects of sample selection, and contrast them to the
impact of correcting for e.g. beam-smearing.

The distribution of the TFR sample with respect to the
full KMOS3D sample (as of January 2016) and to the cor-
responding 3D-HST sample in terms of star formation rate
and effective radius as a function of stellar mass is shown in
Figure 3 (for a detailed comparison of the W16 sample, we
refer the reader to W16). We select 3D-HST galaxies with
0.6 < z < 2.7, log(M∗ [M⊙]) > 9.2, Ks < 23, and for the
‘SFGs only’ subset we apply sSFR > 0.7/tHubble, for a total
of 9193 and 7185 galaxies, respectively. Focussing on the
‘SFGs only’ subset, the median and corresponding 68th per-
centiles with respect to the MS relations for the z ∼ 0.9 and
the z ∼ 2.3 populations are log(∆ MS)=0.00+0.34

−0.39 and log(∆
MS)=−0.05+0.26

−0.35, and with respect to the mass-size (M-R) re-
lation log(∆ M-R)=−0.04+0.16

−0.28 and log(∆ M-R)=−0.02+0.17
−0.31,

respectively. At z ∼ 0.9, the TFR galaxies lie on average
a factor of ∼ 1.6 above the MS, with log(∆ MS)=0.20+0.42

−0.21,
and have sizes corresponding to log(∆M-R)=−0.02+0.16

−0.17. At
z ∼ 2.3, the TFR galaxies lie on average on the MS and M-
R relations (log(∆MS)=−0.01+0.13

−0.29, log(∆M-R)=0.06+0.17
−0.14),

but their scatter with respect to higher SFRs and to smaller
radii is not as pronounced as for the star-forming 3D-HST
sample.

The median physical properties of our Y J, H , and K sub-
samples are listed in Table 1. Individual properties of galaxies
in the TFR sample in terms of z, M∗, Mbar, vcirc,max, and σ0,
are listed in Table E1.

In summary, our analysis accounts for the following effects:
(i) beam-smearing, through a full forward modelling of the
observed velocity and velocity dispersion profiles with the
known instrumental PSF; (ii) the intrinsic thickness of high−z

disks, following Noordermeer (2008); (iii) pressure support
through turbulent gas motions, following Burkert et al.
(2010), under the assumption of a disk of constant velocity
dispersion and scale height. The former steps are all included
in the dynamical modelling by W16. On top of that, we
retain in our TFR sample only non-interacting SFGs which
are rotationally supported based on the vrot,max/σ0 >

√
4.4

criterion, and for which the data have sufficient S/N and
spatial coverage to robustly map, and model, the observed
rotation curve to or beyond the peak rotation velocity.

3. THE TFR WITH KMOS3D

3.1. Fitting

In general, there are two free parameters for TFR fits in
log-log space: the slope a and the zero-point offset b. It is

standard procedure to adopt a local slope for high−zTFR fits1.
This is due to the typically limited dynamical range probed
by the samples at high redshift which makes it challenging to
robustly constrain a. The TFR evolution is then measured as
the relative difference in zero-point offsets (e.g. Puech et al.
2008; Cresci et al. 2009; Gnerucci et al. 2011; Miller et al.
2011, 2012; Tiley et al. 2016). In Appendix B we briefly
investigate a method to measure TFR evolution which is in-
dependent of the slope. For clarity and consistency with TFR
investigations in the literature, however, we present our main
results based on the functional form of the TFR as given in
Equation (4) below. For our fiducial fits, we adopt the local
slopes by Reyes et al. (2011) and Lelli et al. (2016) for the
sTFR and the bTFR, respectively.2

To fit the TFR we adopt an inverse linear regression model
of the form

log(M [M⊙]) = a · log(vcirc/vref ) + b. (4)

Here, M is the stellar or baryonic mass, and a reference value
of vref = vcirc is chosen to minimize the uncertainty in the
determination of the zero-point b (Tremaine et al. 2002). If
we refer in the remainder of the paper to b as the zero-point
offset, this is for our sample in reference to vcirc = vref , and
not to log(vcirc [km/s])=0. When comparing to other data sets
in §§ 3.4 and 4.2 we convert their zero-points accordingly.

For the fitting we use a Bayesian approach to linear regres-
sion, as well as a least-squares approximation. The Bayesian
approach to linear regression takes uncertainties in ordinate
and abscissa into account.3 The least-squares approximation
also takes uncertainties in ordinate and abscissa into account,
and allows for an adjustment of the intrinsic scatter to ensure
for a goodness of fit of χ2

reduced ≈ 1.4 To evaluate the un-
certainties of the zero-point offset b of the fixed-slope fits,
a bootstrap analysis is performed for the fits using the least-
squares approximation. The resulting errors agree with the
error estimates from the Bayesian approach within 0.005 dex
of mass. We find that the intrinsic scatter obtained from the
Bayesian technique is similar or larger by up to 0.03 dex of
mass as compared to the least-squares method. Both methods
give the same results for the zero-point b (see also the recent
comparison by Bradford et al. 2016).

We perform fits to our full TFR sample, as well as to the
subsets at z ∼ 0.9 and z ∼ 2.3. The latter allows us to

1 While the slope might in principle vary with cosmic time, a redshift
evolution is not expected from the toy model introduced in Section 1.

2 The sTFR zero-point by Reyes et al. is corrected by −0.034 dex to
convert their Kroupa (2001) IMF to the Chabrier IMF which is used in this
work, following the conversions given in Madau & Dickinson (2014).

3 We use the IDL routine linmix_err which is described and provided by
Kelly (2007). A modified version of this code which allows for fixing of the
slope was kindly provided to us by Brandon Kelly and Marianne Vestergaard.

4 We use the IDL routine mpfitexy which is described and provided by
Williams et al. (2010). It depends on the mpfit package (Markwardt 2009).
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Table 1. Median physical properties of our TFR subsamples at z ∼ 0.9 (Y J), z ∼ 1.5 (H), and z ∼ 2.3 (K), together with the associated central
68th percentile ranges in brackets.

z ∼ 0.9 z ∼ 1.5 z ∼ 2.3

(65 galaxies) (24 galaxies) (46 galaxies)

log(M∗ [M⊙]) 10.49 [10.03; 10.83] 10.72 [10.08; 11.07] 10.51 [10.18; 11.00]

log(Mbar [M⊙]) 10.62 [10.29; 10.98] 10.97 [10.42; 11.31] 10.89 [10.59; 11.33]

SFR [M⊙ /yr] 21.1 [7.1; 39.6] 53.4 [15.5; 134.5] 72.9 [38.9; 179.1]

log(∆ MS)a 0.20 [-0.21; 0.42] 0.10 [-0.21; 0.45] -0.01 [-0.29; 0.13]

R5000
e [kpc] 4.8 [3.0; 7.6] 4.9 [3.0; 7.0] 4.0 [2.5; 5.2]

log(∆ M-R)b -0.02 [-0.17; 0.16] 0.08 [-0.10; 0.17] 0.06 [-0.14; 0.17]

nS 1.3 [0.8; 3.1] 0.9 [0.4; 2.2] 1.0 [0.4; 1.6]

B/Tc 0.11 [0.00; 0.39] 0.00 [0.00; 0.23] 0.10 [0.00; 0.25]

vrot,max [km/s] 233 [141; 302] 245 [164; 337] 239 [160; 284]

σ0 [km/s] 30 [9; 52] 47 [29; 59] 49 [32; 68]

vrot,max/σ0 6.7 [3.2; 25.3] 5.5 [3.4; 65.6] 4.3 [3.4; 9.1]

vcirc,max [km/s] 239 [167; 314] 263 [181; 348] 260 [175; 315]

aMS offset with respect to the broken power law relations derived by Whitaker et al. (2014), using the redshift-interpolated parametrization by
W15, ∆MS=SFR − SFRMS(z,M∗)[W14] .

bOffset from the mass-size relation of SFGs with respect to the relation derived by van der Wel et al. (2014),
∆M-R=R5000

e − R5000
e,M−R(z,M∗)[vdW14] , after correcting the H−band Re to the rest-frame 5000 Å.

c Bulge-to-total mass ratio if available, namely for 78, 92, and 89 per cent of our galaxies in Y J−, H−, and K−band, respectively. Values of
B/T = 0 usually occur when the galaxy’s Sérsic index nS is smaller than 1 (cf. Lang et al. 2014).

×4

MS

×1/4

3D−HST parent sample 0.6<z<2.6

 KMOS3D detections
 TFR sample at z∼ 0.9
 TFR sample at z∼ 1.5
 TFR sample at z∼ 2.3

×2

M−R

×1/2

3D−HST parent sample 0.6<z<2.6, SFGs only

 KMOS3D detections, SFGs only

 TFR sample at z∼ 0.9
 TFR sample at z∼ 1.5
 TFR sample at z∼ 2.3

Figure 3. Location of our TFR galaxies in the M∗-SFR (left) and in the M∗-Re plane (right) as compared to all detected KMOS3D galaxies (purple
diamonds) and the underlying galaxy population at 0.6 < z < 2.7 taken from the 3D-HST source catalogue (grey scale) with log(M∗ [M⊙]) > 9.2,
KAB < 23 mag, and for the M∗-Re relation sSFR > 0.7/tHubble (‘SFGs only’). In the left panel, the SFR is normalized to the MS as derived by
Whitaker et al. (2014) at the redshift and stellar mass of each galaxy, using the redshift-interpolated parametrization by W15. In the right panel,
the effective radii as measured from H−band are corrected to the rest-frame 5000 Å and normalized to the M-R relation of SFGs as derived
by van der Wel et al. (2014) at the redshift and stellar mass of each galaxy. At z ∼ 0.9 the TFR galaxies lie on average a factor of ∼ 1.6 above
the MS, but on average on the M-R relation. At z ∼ 2.3, the TFR galaxies lie on average on the MS and the M-R relation, but their scatter
with respect to higher SFRs and to smaller radii is not as pronounced as for the star-forming 3D-HST sample. For the 3D-HST ‘SFGs only’
population the median and 68th percentile ranges are log(∆ MS)=0.00+0.33

−0.37 , and log(∆ M-R)=−0.04+0.17
−0.28 . See Table 1 for the corresponding

ranges of the TFR sample.
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probe the maximum separation in redshift possible within the
KMOS3D survey. Due to the low number of TFR galaxies
in our H−band bin we do not attempt to fit a zero-point at
z ∼ 1.5.

3.2. The TFR at 0.6 < z < 2.6

In this paragraph, we investigate the Tully-Fisher properties
of our full TFR sample at 0.6 < z < 2.6. The sTFR as
well as the bTFR are clearly in place and well defined at
0.6 < z < 2.6, confirming previous studies (e.g. Cresci et al.
2009; Miller et al. 2011, 2012; Tiley et al. 2016, and other
high−z work cited in Section 1). In Figure 4 we show the
best fits for the sTFR and the bTFR using the local slopes
by Reyes et al. (2011) (a = 1/0.278 = 3.60) and Lelli et al.
(2016) (a = 3.75), respectively. The best-fit parameters are
given in Table 2.

The intrinsic scatter as determined from the fits is with
ζint,sTFR ≈ 0.22 and ζint,bTFR ≈ 0.23 larger by up to a factor of
two in dex of mass than in the local Universe (typical values
for the observed intrinsic scatter of the local relations used in
this study are ζint = 0.1−0.13 in dex of mass; see Reyes et al.
2011; Lelli et al. 2016). A larger scatter in the high−z TFR is
expected simply due to the larger measurement uncertainties.
It might further be due to disk galaxies being less “settled”
(Kassin et al. 2012; Simons et al. 2016). This can become
manifest through actual displacement of galaxies from the
TFR due to a non-equilibrium state (see e.g. simulations by
Covington et al. 2010).

Miller et al. (2013) studied the connection between TFR
scatter and bulge-to-total ratio, and found that above z ≈
1 the TFR scatter is increased due to an offset of bulge-
less galaxies from the B/T > 0.1 galaxy population. If we
select only galaxies with B/T > 0.1 (57 galaxies), we do not
find a decrease in scatter for our sample (ζint,sTFR,B/T>0.1 =

0.22 and ζint,bTFR,B/T>0.1 = 0.24). The same is true if we
select for galaxies with B/T < 0.1 (78 galaxies), leading to
ζint,sTFR,B/T<0.1 = 0.23 and ζint,bTFR,B/T<0.1 = 0.22.

However, the scatter is affected by the sample selection:
if we create ‘first order’ TFRs (§ 2.4, Figure 2), i.e. us-
ing all detected and resolved KMOS3D galaxies without sky-
line contamination (316 SFGs), but also without selecting
against dispersion-dominated systems, low S/N galaxies, or
mergers, we find an intrinsic scatter of ζint,sTFR = 0.60 and
ζint,bTFR = 0.64 for these ‘first order’ TFRs (for the parent
W16 sample we find ζint,sTFR = 0.27 and ζint,bTFR = 0.29).
We caution that this test sample includes galaxies where the
maximum rotation velocity is not reached, thus introducing
artificial scatter in these ‘first order’ TFRs. In contrast to
the properties of our TFR sample, this scatter is asymmet-
ric around the best fit, with larger scatter towards lower ve-
locities, but also towards lower masses where more of the
dispersion-dominated galaxies reside (cf. Figures 2 and A1).
This underlines the importance of a careful sample selection.

Also the zero-points are affected by the sample selection

(see also Figure A1). For our TFR sample, we find bsTFR =

10.50 ± 0.03 and bbTFR = 10.75 ± 0.03. If we consider
the ‘first order’ samples we find an increase of the zero-
points of ∆bsTFR = 0.37 dex and ∆bbTFR = 0.39 dex (for the
parent W16 sample we find ∆bsTFR = 0.03 dex and ∆bbTFR =

0.04 dex).
It is common, and motivated by the scatter of the TFR, to

investigate the existence of hidden parameters in the relation.
For example, a measure of the galactic radius (effective, or ex-
ponential scale length) has been investigated by some authors
to test for correlations with TFR residuals (e.g. McGaugh
2005; Pizagno et al. 2005; Gnedin et al. 2007; Zaritsky et al.
2014; Lelli et al. 2016). The radius, together with mass, de-
termines the rotation curve (e.g. Equation (D6)). Adopting
the local slopes, we do not find significant correlations (based
on Spearman tests) of the TFR residuals with Re , B/T , nS,
stellar or baryonic mass surface density, offset from the main
sequence or the mass-radius relation, SFR surface density
ΣSFR, or inclination). In Appendix C we investigate how
the uncertainties in stellar and baryonic mass affect second-
order parameter dependencies for TFR fits with free slopes,
by example of Re and ΣSFR.

In summary,we find well defined mass-based TFRs at 0.6 <
z < 2.6 for our sample. If galaxies with underestimated
peak velocity, dispersion-dominated and disturbed galaxies
are included, the TFR zero-points are increasing, and also
the scatter increases, especially towards lower velocities and
masses. Adopting the local slopes, we find no correlation of
TFR residuals with independent galaxy properties.

3.3. TFR evolution from z ∼ 2.3 to z ∼ 0.9

We now turn to the TFR subsamples at z ∼ 0.9 and
z ∼ 2.3. We adopt the local slopes by Reyes et al. (2011)
and Lelli et al. (2016) to investigate the zero-point evolution.
Our redshift subsamples are shown in Figure 5 for the sTFR
(left) and bTFR (right), together with the corresponding local
relations and the respective fixed-slope fits. The parameters
of each fit are given in Table 2.

For the sTFR we find no indication for a significant change
in zero-point between z ∼ 0.9 and z ∼ 2.3 within the best
fit uncertainties. Using the local slope of a = 3.60 and
the reference value vref = 242 km/s, we find a zero-point
of b = 10.49 ± 0.04 for the subsample at z ∼ 0.9, and of
b = 10.51 ± 0.05 for the subsample at z ∼ 2.3, translating
into a zero-point evolution of ∆b = 0.02 dex between z ∼ 0.9
and z ∼ 2.3.

For the bTFR, however, using the local slope of a = 3.75,
and again the reference value vref = 242 km/s, we find a pos-
itive zero-point evolution between z ∼ 0.9 and z ∼ 2.3, with
b = 10.68 ± 0.04 and b = 10.85 ± 0.05, respectively, trans-
lating into a zero-point evolution of ∆b = 0.17 dex between
z ∼ 0.9 and z ∼ 2.3.

If we consider the ‘first order’ TFR subsamples at z ∼
0.9 and z ∼ 2.3, we find significantly different zero-point
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 Reyes+2011 slope

0.6<z<2.6  (N=135)

 Lelli+2016 slope

0.6<z<2.6  (N=135)

Figure 4. The sTFR (left) and the bTFR (right) for our sample of 135 SFGs, with error bars in grey. The green lines show the fixed-slope fits to
the inverse linear regression model as given in Equation (4), using the corresponding local slopes by Reyes et al. (2011) and Lelli et al. (2016).
The fit parameters are given in Table 2. A correlation between vcirc and the different mass tracers is evident.

Table 2. Results from the inverse linear regression fits to Equation (4) using the least-squares method, including bootstrapped errors of the
zero-point. The reference velocity is vref = 242 km/s.

TFR redshift range number of galaxies slope a (local relation) zero-point b (error) intrinsic scatter ζint
[

log(M [M⊙ ])
log(vcirc [km/s])

]

[log(M [M⊙])] [dex of M⊙]

sTFR 0.6 < z < 2.6 135 3.60 (Reyes et al. 2011) 10.50 (±0.03) 0.22

z ∼ 0.9 65 3.60 (Reyes et al. 2011) 10.49 (±0.04) 0.21

z ∼ 2.3 46 3.60 (Reyes et al. 2011) 10.51 (±0.05) 0.26

bTFR 0.6 < z < 2.6 135 3.75 (Lelli et al. 2016) 10.75 (±0.03) 0.23

z ∼ 0.9 65 3.75 (Lelli et al. 2016) 10.68 (±0.04) 0.22

z ∼ 2.3 46 3.75 (Lelli et al. 2016) 10.85 (±0.05) 0.26

evolutions of ∆bsTFR = 0.23 dex and ∆bbTFR = 0.28 dex
between z ∼ 0.9 and z ∼ 2.3. Again, this highlights the
importance of a careful sample selection for TFR studies.
Figure A2 shows that if instead we extend our data set to the
sample from W16, we find qualitatively the same trends as for
the adopted TFR sample, namely an evolution of ∆bsTFR =

0.05 dex and ∆bbTFR = 0.20 dex for the zero-point between
z ∼ 0.9 and z ∼ 2.3 (see Appendix A). Also, if we consider
only TFR galaxies with B/T > 0.1(< 0.1), our qualitative
results remain the same.

In summary, we find no evolution for the sTFR, but a pos-
itive evolution of the bTFR between z ∼ 0.9 and z ∼ 2.3.
If galaxies with underestimated peak velocity, dispersion-
dominated and disturbed galaxies are included, we find posi-
tive evolution of both the sTFR and the bTFR.

3.4. Comparison to other high−z studies

At z ∼ 0.9 we compare our sTFR (65 KMOS3D galaxies)
to the work by Tiley et al. (2016) and Miller et al. (2011).
Tiley et al. (2016) have investigated the sTFR at z ∼ 0.9 using
56 galaxies from the KROSS survey with KMOS (Stott et al.
2016). Miller et al. (2011, 2012) have presented an extensive
slit-based sTFR study at 0.2 < z < 1.7 with 37 galaxies at
z ∼ 1. From Tiley et al., we use their best fixed-slope fit
to their disky subsample (a = 3.68). From Miller et al., we
use the z ∼ 1 fit corresponding to total stellar mass and
vrot,3.2 (a = 3.78). For a sTFR comparison at z ∼ 2.3
(46 KMOS3D galaxies), we consider the work by Cresci et al.
(2009). The authors have studied the sTFR at z ∼ 2.2 for 14
galaxies from the SINS survey (a = 4.5). Despite the small
sample size, the high-quality data based on the 2D modelling
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 Reyes+2011 (z~0)
 (a=3.60, b=2.36)

 z~0.9 
 ∆b=−0.44 dex

 z~2.3 
 ∆b=−0.42 dex

z∼ 0.9  (N= 65)

z∼ 2.3  (N= 46)

 Lelli+2016 (z~0)
 (a=3.75, b=2.18)

 z~0.9 
 ∆b=−0.44 dex

 z~2.3 
 ∆b=−0.27 dex

z∼ 0.9  (N= 65)

z∼ 2.3  (N= 46)

Figure 5. Fixed-slope fits for the sTFR (left) and the bTFR (right) using local (black) slopes to our KMOS3D subsamples at z ∼ 0.9 (blue) and
z ∼ 2.3 (red). For the local relations, we give a and b corresponding to our adopted functional form of the TFR give in Equation (4), with
log(vref [km/s])=0. For the sTFR, we find no (or only marginal) evolution of the sTFR zero-point in the studied redshift range. Comparing
to the local relation by Reyes et al. (2011) we find ∆b = −0.44 and −0.42 dex at z ∼ 0.9 and z ∼ 2.3, respectively. For the bTFR, we find a
positive evolution of the zero-point between z ∼ 0.9 and z ∼ 2.3. Comparing to the local relation by Lelli et al. (2016) we find ∆b = −0.44 and
−0.27 dex at z ∼ 0.9 and z ∼ 2.3, respectively.

 Tiley+2016 (T16)

 KMOS3D, T16 slope
 Miller+2011 (M11)

 KMOS3D, M11 slope

 Cresci+2009 (C09)

 KMOS3D, C09 slope

 Price+2016 (P16)

 KMOS3D, P16 slope

z∼ 0.9  (N= 65) z∼ 2.3  (N= 46) z∼ 2.3  (N= 46)

Figure 6. Left and middle panel: the vrot-sTFRs at z ∼ 0.9 (left panel) and z ∼ 2.3 (middle panel). We show fits from Tiley et al. (2016)
(z ∼ 0.9; magenta), Miller et al. (2011) (z ∼ 1; green) and Cresci et al. (2009) (z ∼ 2.2; orange) as solid lines, together with corresponding
fixed-slope fits to our samples as dashed lines. From Tiley et al., we use their best fixed-slope fit to their disky subsample. From Miller et al., we
use the z ∼ 1 fit corresponding to total stellar mass and vrot,3.2 . Our findings regarding the zero-point offset are in agreement with Tiley et al.
and Cresci et al., but in disagreement with Miller et al.. Right panel: the S0.5-bTFR at z ∼ 2.3. We show the fit from Price et al. (2016) (z ∼ 2;
red) as a solid line, together with the corresponding fixed-slope fit to our sample as a dashed line. Our findings regarding the zero-point offset
are in agreement.
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of velocity and velocity dispersion maps qualify the sample
for comparison with our findings in the highest redshift bin.

In the following, we use vrot,max to ensure a consistent com-
parison with the measurements presented in these studies.
For a comparison with the literature data, we make the sim-
plifying assumption that vrot,max is comparable to vrot,80 and
vrot,3.2 (see § 4.3.3 for a discussion). We adopt the slopes
reported in the selected studies to guarantee consistency in
the determination of zero-point offsets. The results are shown
in Figure 6 as dashed lines, while the original relations from
the literature are shown as solid lines. The difference in
zero-points, ∆b, is then computed as the zero-point from the
KMOS3D fixed-slope fit minus the zero-point from the liter-
ature. Given the typical zero-point uncertainty of our fits of
δb ≈ 0.05 dex, our results are in agreement with Tiley et al.
(∆b = 0.06) and Cresci et al. (∆b = 0.07), but in disagree-
ment with Miller et al. at z ∼ 1 (∆b = −0.31).

A number of complications might give rise to conflicting
results of different TFR studies, such as the use of various
kinematic models, velocity tracers, mass estimates, or statis-
tical methods. Tiley et al. (2016), who present an extensive
comparison of several sTFR studies from the literature, ar-
gue that conflicting results regarding the zero-point evolution
with redshift depend on the ability of the studies to select
for rotationally supported systems. The two-dimensional in-
formation on the velocity and velocity dispersion fields is a
major advantage of IFS observations as it allows for the robust
determination of the kinematic center and major axis.

We test the case of selecting against dispersion-dominated
or disturbed systems for our TFR samples. For the full sam-
ple of 240 SFGs by W16, which includes some dispersion-
dominated systems and cases where the peak rotation velocity
might be underestimated by the model, we indeed find that
the difference in zero-point, ∆b, with Miller et al. shrinks by
∼ 30 per cent. If we now even turn to the purely obser-
vational ‘first order sTFR’, this time using only the z < 1.3
galaxies (122 SFGs) and the vrot,max tracer, we find agreement
to Miller et al. (∆b = 0.02). Again, we caution that this ‘first
order’ sample contains not only dispersion-dominated and
merging galaxies, but also galaxies for which the maximum
velocity is underestimated. This exercise supports the inter-
pretation that the disagreement with Miller et al. (2011) is
partly due to the more robust selection of rotation-dominated
systems for the TFR analysis which is possible with IFS data.
Figure A1 shows that also an underestimation of the beam-
smearing corrections could lead to differences of comparable
order.

The high−z evolution of the bTFR has received less atten-
tion in the literature, and the slit-based relation at z ∼ 2 by
Price et al. (2016) using galaxies from the MOSDEF survey
(Kriek et al. 2015) is the only high−z bTFR we are aware of.
Price et al. use the S0.5 = (0.5 · v2

rot + σ
2
g )1/2 velocity tracer,

which also incorporates dynamical support from disordered
motions based on the assumption of isotropic (or constant)

gas velocity dispersion σg (Weiner et al. 2006; Kassin et al.
2007). Price et al. show a plot of the S0.5−bTFR of 178 SFGs,
of which 35 (15) have detected (resolved) rotation measure-
ments. For resolved galaxies, S0.5 is obtained through com-
bining a constant intrinsic velocity dispersion, and vrot,2.2.
For unresolved galaxies, Price et al. estimate S0.5 through an
rms velocity (see their Appendix B for details). We use their
fixed-slope fit (a = 1/0.39) to compare their results to our
46 KMOS3D galaxies at z ∼ 2.3 in the right panel of Fig-
ure 6. Our fixed-slope fit is in agreement with the result by
Price et al. (∆b = −0.03). This is surprising at first, given
the above discussion of IFS vs. slit-based rotation curve mea-
surements, and the fact that the Price et al. sample contains a
large fraction of objects without detected rotation. However,
Price et al. state that their findings regarding the S0.5-bTFR
do not change if they consider only the galaxies with detected
rotation measurements. This is likely due to the detailed
modelling and well-calibrated translation of line width to ro-
tation velocity by the authors. In general, any combination
of velocity dispersion and velocity into a joined measure is
expected to bring turbulent and even dispersion-dominated
galaxies closer together in TFR space, which might further
serve as an explanation for this good agreement (see also
Covington et al. 2010).5

In summary, our inferred vrot-sTFR zero-points (i.e., not
corrected for pressure support) agree with the work by
Cresci et al. (2009) and Tiley et al. (2016), but disagree with
the work by Miller et al. (2011). Our S0.5-bTFR zero-point
agrees with the result by Price et al. (2016). We emphasize
that the negligence of turbulent motions in the balance of
forces leads to a relation which has lost its virtue to directly
connect the baryonic kinematics to the central potential of
the halo.

4. TFR EVOLUTION IN CONTEXT

4.1. Dynamical support of SFGs from z ∼ 2.3 to z ∼ 0.9

At fixed vcirc, our sample shows higher Mbar and similar
M∗ at z ∼ 2.3 as compared to z ∼ 0.9 (Figure 5). Galac-
tic gas fractions are strongly increasing with redshift, as it
has become clear in the last few years (Tacconi et al. 2010;
Daddi et al. 2010; Combes et al. 2011; Genzel et al. 2015;
Tacconi et al. 2017). In our TFR sample, the baryonic mass
of the z ∼ 2.3 galaxies is on average a factor of two larger
as compared to z ∼ 0.9, while stellar masses are comparable.
The relative offset at fixed vcirc of our redshift subsamples
in the bTFR plane, which is not visible in the sTFR plane,

5 Partly, this is also the case for the measurements by Miller et al. (2011,
2012), if a correction for turbulent pressure support is performed. Since their
velocity dispersions are not available to us, however, only an approximative
comparison is feasible. From this, we found agreement of their highest
redshift bin (z ∼ 1.5) with our 0.6 < z < 2.6 data in the vcirc-sTFR plane,
but still a significant offset at z ∼ 1.
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confirms the relevance of gas at high redshift.
Building on the recent work by W16 on the mass budgets

of high−z SFGs, we can identify through our Tully-Fisher
analysis another redshift-dependent ingredient to the dynam-
ical support of high−z SFGs. The sTFR zero-point does not
evolve significantly between z ∼ 2.3 and z ∼ 0.9. Since we
know that there is less gas in the lower−z SFGs, the ‘miss-
ing’ baryonic contribution to the dynamical support of these
galaxies as compared to z ∼ 2.3 has to be compensated by
DM. We therefore confirm with our study the increasing im-
portance of DM to the dynamical support of SFGs (within
∼ 1.3 Re) through cosmic time. This might be partly due to
the redshift dependence of the halo concentration parameters,
which decrease with increasing redshift. In the context of the
toy model mentioned in Section 1, it is indeed the case that a
decrease of the DM fraction as probed by the central galaxy
with increasing redshift can flatten out or even reverse the
naively expected, negative evolution of the TFR offset with
increasing redshift. This will be discussed in more detail in
Section 5.

The increase of baryon fractions with redshift is supported
by other recent work: W16 find that the baryon fractions of
SFGs within Re increase from z ∼ 1 to z & 2, with galaxies
at higher redshift being clearly baryon-dominated (see also
Förster Schreiber et al. 2009; Alcorn et al. 2016; Price et al.
2016; Burkert et al. 2016; Stott et al. 2016; Contini et al.
2016). W16 also find that the baryonic mass fractions are
correlated with the baryonic surface density within Re , sug-
gesting that the lower surface density systems at lower red-
shift are more diffuse and therefore probe further into the halo
(consequently increasing their DM fraction). Most recently,
Genzel et al. (2017) find in a detailed study based on the outer
rotation curves of six massive SFGs at z = 0.9 − 2.4 that the
three z > 2 galaxies are most strongly baryon-dominated. On
a statistical basis, this is confirmed through stacked rotation
curves of more than 100 high−z SFGs by Lang et al. (2017).

Given the average masses of our galaxies in the Y J and K

subsamples, we emphasize that we are generally not tracing
a progenitor-descendant population in our sample, since the
average stellar and baryonic masses of the z ∼ 2.3 galaxies
are already higher than for those at z ∼ 0.9 (Table 1). It is
very likely that a large fraction of the massive star-forming
disk galaxies we observe at z & 1 have evolved into early-
type galaxies (ETGs) by z = 0, as discussed in the recent
work by Genzel et al. (2017). Locally, there is evidence that
ETGs have high SFRs at early times, with the most massive
ETGs forming most of their stars at z & 2 (e.g. Thomas
2010; McDermid et al. 2015). This view is supported by co-
moving number density studies (e.g. Brammer et al. 2011),
which also highlight that the mass growth of today’s ETGs
after their early and intense SF activity is mainly by the in-
tegration of (stellar) satellites into the outer galactic regions
(van Dokkum et al. 2010). The observed low DM fractions
of the massive, highest−z SFGs seem to be consistent with

the early assembly of local ETGs, with rapid incorporation
of their baryon content. In future work, we will compare
our observations to semi-analytical models and cosmological
zoom-in simulations to investigate in greater detail the pos-
sible evolutionary scenarios of our observed galaxies in the
context of TFR evolution.

4.2. Comparison to the local Universe

In Figure 5 we show the TFR zero-point evolution in con-
text with the recent local studies by Reyes et al. (2011) for
the sTFR, and by Lelli et al. (2016) for the bTFR. Reyes et al.
study the sTFR for a large sample of 189 disk galaxies, us-
ing resolved Hα rotation curves. Lelli et al. use resolved
Hi rotation curves and derive a bTFR for 118 disk galax-
ies. To compare these local measurements to our high−z

KMOS3D data, we assume that at z ≈ 0 the contribution from
turbulent motions to the dynamical support of the galaxy is
negligible, and therefore vcirc ≡ vrot. We make the simplify-
ing assumption that vcirc is comparable to v80 and vflat used
by Reyes et al. and Lelli et al., respectively (see § 4.3.3 for a
discussion). From Lelli et al., we use the fit to their subsam-
ple of 58 galaxies with the most accurate distances (see their
classification).

For the sTFR as well as the bTFR we find significant offsets
of the high−z relations as compared to the local ones, namely
∆bsTFR,z∼0.9 = −0.44, ∆bsTFR,z∼2.3 = −0.42, ∆bbTFR,z∼0.9 =

−0.44 and∆bbTFR,z∼2.3 = −0.27. We have discussed in §§ 3.2
and 3.3 the zero-points of the ‘first order’ TFRs as compared
to our fiducial TFRs: while there is significant offset for
both the ‘first order’ sTFR and bTFR when comparing the
z ∼ 0.9 and the z ∼ 2.3 subsamples, the overall offset to the
local relations is reduced. The difference between the local
relations and the full ‘first order’ samples is only ∆bsTFR =

−0.06 and ∆bbTFR = 0.02, which would be consistent with
no or only marginal evolution of the TFRs between z = 0 and
0.6 < z < 2.3.

For the interpretation of the offsets to the local relations,
it is important to keep in mind that we measure the TFR
evolution at the typical fixed circular velocity of galaxies in
our high−z sample. This traces the evolution of the TFR itself
through cosmic time, not the evolution of individual galaxies.
Our subsamples at z ∼ 0.9 and z ∼ 2.3 are representative
of the population of massive MS galaxies observed at those
epochs, with the limitations as discussed in § 2.4. Locally,
however, the typical disk galaxy has lower circular velocity
than our adopted reference velocity, and consequently lower
mass (cf. e.g. Figure 1 by Courteau & Dutton 2015). Figure 5
does therefore not indicate how our galaxies will evolve on
the TFR from z ∼ 2 to z ∼ 0, but rather shows how the
relation itself evolves, as defined through the population of
disk galaxies at the explored redshifts and mass ranges. This
is also apparent if actual data points of low- and high-redshift
disk galaxies are shown together. We show a corresponding
plot for the bTFR in Appendix B.
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In summary, our results suggest an evolution of the TFR
with redshift, with zero-point offsets as compared to the lo-
cal relations of ∆bsTFR,z∼0.9 = −0.44, ∆bsTFR,z∼2.3 = −0.42,
∆bbTFR,z∼0.9 = −0.44 and ∆bbTFR,z∼2.3 = −0.27. If galaxies
with underestimated peak velocity, dispersion-dominated and
disturbed galaxies are included, the overall evolution between
the z = 0 and 0.6 < z < 2.3 samples is insignificant.

4.3. The impact of uncertainties and model assumptions on

the observed TFR evolution

Before we interpret our observed TFR evolution in a cos-
mological context in Section 5, we discuss in the following
uncertainties and modelling effects related to our data and
methods. We find that uncertainties of mass estimates and
velocities cannot explain the observed TFR evolution. Ne-
glecting the impact of turbulent motions, however, could ex-
plain some of the tension with other work.

4.3.1. Uncertainties of stellar and baryonic masses

A number of approximations go into the determination of
stellar and baryonic masses at high redshift. Simplifying
assumptions like a uniform metallicity, a single IMF, or an
exponentially declining SFH introduce significant uncertain-
ties to the stellar age, stellar mass, and SFR estimates of
high−z galaxies. While the stellar mass estimates appear to be
more robust against variations in the model assumptions, the
SFRs, which are used for the molecular gas mass calculation,
are affected more strongly (see e.g. Förster Schreiber et al.
2004; Shapley et al. 2005; Wuyts et al. 2007, 2009, 2016;
Maraston et al. 2010; Mancini et al. 2011, for detailed dis-
cussions about uncertainties and their dependencies). Most
systematic uncertainties affecting stellar masses tend to lead
to underestimates; if this were the case for our high−z sam-
ples, the zero-point evolution with respect to local samples
would be overestimated. However, the dynamical analysis by
W16 suggests that this should only be a minor effect, given
the already high baryonic mass fractions at high redshift.

An uncertainty in the assessment of gas masses at high red-
shift is the unknown contribution of atomic gas. In the local
Universe, the gas mass of massive galaxies is dominated by
atomic gas: for stellar masses of log(M∗ [M⊙]) ≈ 10.5, the ra-
tio of atomic to molecular hydrogen is roughly MHi/MH2 ∼ 3
(e.g. Saintonge et al. 2011). While there are currently no di-
rect galactic Hi measurements available at high redshift,6
a saturation threshold of the Hi column density of only
. 10 M⊙/pc2 has been determined empirically for the lo-
cal Universe (Bigiel & Blitz 2012). The much higher gas

6 But see e.g. Wolfe et al. (2005); Werk et al. (2014) for measurements of
Hi column densities of the circum- and intergalactic medium using quasar ab-
sorption lines. From these techniques, a more or less constant cosmological
mass density of neutral gas since at least z ∼ 3 is inferred (e.g. Péroux et al.
2005; Noterdaeme et al. 2009). Recently, the need for a significant amount
of non-molecular gas in the haloes of high−z galaxies has also been invoked
by the environmental study of the 3D-HST fields by Fossati et al. (2017).

surface densities of our high−z SFGs therefore suggest a neg-
ligible contribution from atomic gas within r . Re (see also
W16). Consequently, the contribution of atomic gas to the
maximum rotation velocity and to the mass budget within
this radius should be negligible. However, there is evidence
that locally Hi disks are much more extended than optical
disks (e.g. Broeils & Rhee 1997). If this is also true at high
redshift, the total galactic Hi mass fractions could still be sig-
nificant at z ∼ 1, as is predicted by theoretical models (e.g.
Lagos et al. 2011; Fu et al. 2012; Popping et al. 2015). Due
to the lack of empirical confirmation, however, these models
yet remain uncertain, especially given that they under-predict
the observed high−z molecular gas masses by factors of 2−5.
Within these limitations, we perform a correction for missing
atomic gas mass at high−z in our toy model discussion in
Section 5.

Following Burkert et al. (2016), we have adopted uncer-
tainties of 0.15 dex for stellar masses, and 0.20 dex for
gas masses. This translates into an average uncertainty of
∼ 0.15 dex for baryonic masses. These choices likely under-
estimate the systematic uncertainties in the error budget which
can have a substantial impact on some of our results, because
the slope as well as the scatter of the TFR are sensitive to the
uncertainties. For the presentation of our main results, we
adopt local TFR slopes, thus mitigating these effects. In Ap-
pendix C, we explore the effect of varying mass uncertainties
on free-slope fits of the TFR, together with implications on
TFR residuals and evolution. We find that measurements of
the zero-point are little affected by the uncertainties on mass,
to an extent much smaller than the observed bTFR evolution
between z ∼ 2.3 and z ∼ 0.9.

4.3.2. Uncertainties of the circular velocities

We compute the uncertainties of the maximum circular
velocity as the propagated errors on the observed velocity
and σ0, including an uncertainty on q of ∼ 20 per cent.
The latter is a conservative choice in the light of the current
KMOS3D magnitude cut of Ks < 23 (cf. van der Wel et al.
2012). For details about the observed quantities, see W15,
and W16 for a comparison between observed and modelled
velocities and velocity dispersions. The resulting median of
the propagated circular velocity uncertainty is 20 km/s.

Maximum circular velocities can be systematically under-
estimated: although the effective radius enters the modelling
procedure as an independent constraint, the correction for
pressure support can lead to an underestimated turn-over ra-
dius if the true turn-over radius is not covered by observa-
tions. For our TFR sample we selected only galaxies where
modelled and observed velocity and dispersion profiles are
in good agreement, and where the maximum or flattening of
the rotation curve is covered by observations. It is therefore
unlikely that our results based on the TFR sample are affected
by systematic uncertainties of the maximum circular velocity.
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4.3.3. Effects related to different velocity measures and models

The different rotation velocity models and measures used in
the literature might affect comparisons between different stud-
ies. Some TFR studies adopt the rotation velocity at 2.2 times
Rd , v2.2, as their fiducial velocity to measure the TFR. We
verified that for the dynamical modelling as described above,
vcirc,2.2 equals vcirc,max, and vrot,2.2 equals vrot,max with an av-
erage accuracy of . 1 km/s. Other commonly used velocity
measures are vflat, v3.2, and v80, the rotation velocity at the ra-
dius which contains 80 per cent of the stellar light. For a pure
exponential disk, this corresponds to roughly v3.0 (Reyes et al.
2011). It has been shown by Hammer et al. (2007) that vflat

and v80 are comparable in local galaxies. For the exponential
disk model including pressure support which we use in our
analysis, vrot(circ),max is on average . 15(10) km/s larger than
vrot(circ),3.2 . Since v3.2 and v80 are, however, usually mea-
sured from an ‘arctan model’ with an asymptotic maximum
velocity (Courteau 1997), reported values in the literature
generally do not correspond to the respective values at these
radii from the thick exponential disk model with pressure
support. Miller et al. (2011) show that for their sample of
SFGs at 0.2 < z < 1.3, the typical difference between v2.2

and v3.2, as computed from the arctan model, is on the order
of a few per cent (see also Reyes et al. 2011). This can also
be assessed from Figure 6 by Epinat et al. (2010), who show
examples of velocity fields and rotation curves for different
disk models (exponential disk, isothermal sphere, ‘flat’, arc-
tan). By construction, the peak velocity of the exponential
disk is higher than the arctan model rotation velocity at the
corresponding radius.

We conclude that our TFR ‘velocity’ values derived from
the peak rotation velocity of a thick exponential disk model
are comparable to vflat, and close to v3.2 and v80 from an arctan
model, with the limitations outlined above. The possible sys-
tematic differences of < 20 km/s between the various velocity
models and measures cannot explain the observed evolution
between z = 0 and 0.6 < z < 2.6.

Another effect on the shape of the velocity and velocity dis-
persion profiles is expected if contributions by central bulges
are taken into account. We have tested for a sample of more
than 70 galaxies that the effect of including a bulge on our
adopted velocity tracer, vcirc,max is on average no larger than
5 per cent. From our tests, we do not expect the qualitative
results regarding the TFR evolution between z ∼ 2.3 and
z ∼ 0.9 presented in this paper to change if we include bulges
into the modelling of the mass distribution.

4.3.4. The impact of turbulent motions

The dynamical support of star-forming disk galaxies can
be quantified through the relative contributions from ordered
rotation and turbulentmotions (see also e.g. Tiley et al. 2016).
We consider only rotation-dominated systems in our TFR
analysis, namely galaxies with vrot,max/σ0 >

√
4.4. Because

of this selection, the effect of σ0 on the velocity measure is

already limited, with median values of vrot,max = 233 km/s
at z ∼ 0.9, and 239 km/s at z ∼ 2.3, vs. median values
of vcirc,max = 239 and vcirc,max = 260 km/s at z ∼ 0.9 and
z ∼ 2.3, respectively (Table 1).

However, this difference translates into changes regarding
e.g. the TFR scatter: for the vrot,max-TFR, we find a scat-
ter of ζint,sTFR = 0.28 and ζint,bTFR = 0.31 at z ∼ 0.9, and
at z ∼ 2.3 we find ζint,sTFR = 0.33 and ζint,bTFR = 0.33,
with those values being consistently higher than the values
reported for the vcirc,max-TFR sample in Table 2. More signif-
icantly, neglecting the contributions from turbulent motions
affects the zero-point evolution: without correcting vrot,max for
the effect of pressure support, we would find ∆bsTFR,z∼0.9 =

−0.34, ∆bsTFR,z∼2.3 = −0.26, ∆bbTFR,z∼0.9 = −0.33 and
∆bbTFR,z∼2.3 = −0.09. The inferred zero-points at higher
redshift are affected more strongly by the necessary correc-
tion for pressure support (cf. Figure 5).

These results emphasize the increasing role of pressure
support with increasing redshift, confirming previous
findings by e.g. Förster Schreiber et al. (2009); Epinat et al.
(2009); Kassin et al. (2012); W15. It is therefore clear
that turbulent motions must not be neglected in kinematic
analyses of high−z galaxies. If the contribution from
pressure support to the galaxy dynamics is dismissed, this
will lead to misleading conclusions about TFR evolution in
the context of high−z and local measurements.

5. A TOY MODEL INTERPRETATION

The relative comparison of our z ∼ 2.3 and z ∼ 0.9 data
and local relations indicates a non-monotonic evolution of the
bTFR zero-point with cosmic time (Figure 5). In this section,
we present a toy model interpretation of our results, aiming to
explain the redshift evolution of both the sTFR and the bTFR.

In Section 1 we have pointed out the connection between
the DM halo scaling relations and the TFR. Some poten-
tially redshift-dependent parameters are hidden in the pre-
sentation of Equation (2), as detailed in Appendix D.1:
the disk mass fraction md = Mbar/Mh , the DM fraction
fDM(Re ) = v

2
DM(Re )/v2

circ(Re ), the halo spin parameter
λ, the ratio of the specific angular momenta of baryons
and DM jbar/ jDM, and for the sTFR also the gas fraction
fgas = Mgas/Mbar. In particular, we expect md and fDM(Re )

to change with cosmic time: while the stellar disk mass
fraction, md,∗ = M∗/Mh , evolves only mildly with red-
shift for the massive galaxies that are relevant to this study
(Moster et al. 2013; Behroozi et al. 2013), the gas-to-stellar
mass ratio evolves strongly (Mgas,molecular/M∗ ∼ (1 + z)2.6;
Tacconi et al. 2010; Daddi et al. 2010; Combes et al. 2011;
Genzel et al. 2015; Tacconi et al. 2017). This results in more
important changes in the baryonic md . Recent empirical
work shows that while fDM(Re ) decreases with redshift, md

increases (Burkert et al. 2016, W16, Genzel et al. 2017). In
the framework of universal DM profiles, the central DM
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fraction is affected by the evolution of the concentration pa-
rameter c which increases with decreasing redshift (z . 3)
and decreasing halo mass (see e.g. Dutton & Macciò 2014).
Also λ and the specific angular momentum might be subject
to changes with redshift. There is now, however, growing
empirical evidence that the net specific angular momentum
is indeed conserved for SFGs through most of cosmic his-
tory (Burkert et al. 2016; Huang et al. 2017). In general, the
redshift-dependence of all these parameters might be linked
through the gradual build-up of the DM halo and the baryonic
galaxy, including the impact of baryon cooling and feedback,
or the response of the halo to the formation of the bary-
onic disk (Navarro & Steinmetz 2000; van den Bosch 2002;
Cattaneo et al. 2014; Ferrero et al. 2017).

Considering the particular dependencies on fDM(Re ) and
md , Equation (2) can be written as (see Appendix D.1)

Mbar =
v

3
circ(Re )

H (z)
· [1 − fDM(Re )]3/2

m
1/2
d

· C. (5)

An equivalent expression for the stellar mass can be derived
via introducing fgas:

M∗ =
v

3
circ(Re )

H (z)
·

[1 − fDM(Re )]3/2 (1 − fgas)

m
1/2
d

· C′. (6)

Here, C and C′ are constants. Equations (5) and (6) reveal
that the hypothetical smooth TFR evolution can be severely
affected by changes of fDM(Re ), md , or fgas with redshift.
There have been indications for deviations from the simple
smooth TFR evolution scenario represented by Equation (2)
in the theoretical work by Somerville et al. (2008). Also the
recent observational compilation by Swinbank et al. (2012)
showed a deviating evolution (although qualified as consistent
with the smooth evolution scenario).

Evaluating Equations (5) and (6) at fixed vcirc(Re ), we learn
the following: (i) if fDM(Re ) decreases with increasing red-
shift, the baryonic and stellar mass will increase and conse-
quently the TFR zero-point will increase; (ii) if md increases
with increasing redshift, the baryonic and stellar mass will
decrease and consequently the TFR zero-point will decrease;
(iii) if fgas increases with increasing redshift, the stellar mass
will decrease and consequently the sTFR zero-point will de-
crease. These effects are illustrated individually in Figure D7
in Appendix D. Although we do not explore in detail vari-
ations in λ or jbar/ jDM, as supported by the recent work by
Burkert et al. (2016), we note here their relative effects for
completeness: (iv) if λ decreases with increasing redshift,
the baryonic and stellar mass will decrease and consequently
the TFR zero-point will decrease; (v) if jbar/ jDM decreases
with increasing redshift, the baryonic and stellar mass will
decrease and consequently the TFR zero-point will decrease.

We now present an empirically motivated toy model of disk
galaxy evolution including changes of fgas, fDM(Re ), and md

with cosmic time. In this model, the redshift evolution of

fgas is constrained through the empirical atomic and molecu-
lar gas mass scaling relations by Saintonge et al. (2011) and
Tacconi et al. (2017). At fixed circular velocity, fgas evolves
significantly with redshift, where z ∼ 2 galaxies have gas
fractions which are about a factor of eight higher than in
the local Universe. The redshift evolution of fDM(Re ) is con-
strained through the observational results by Martinsson et al.
(2013b,a) in the local Universe, and by W16 at z ∼ 0.9 and
z ∼ 2.3. We tune the redshift evolution of fDM(Re ) within the
ranges allowed by these observations to optimize the match
between the toy model and the observed TFR evolution pre-
sented in this paper. fDM(Re ) evolves significantly with red-
shift, with z ∼ 2 DM fractions which are about a factor of
five lower than at z = 0. md is constrained by the abun-
dance matching results by Moster et al. (2013) in the local
Universe, whereas at 0.8 < z < 2.6 we adopt the value de-
duced by Burkert et al. (2016). Details on the parametrization
of the above parameters are given in Appendix D.2.

In Figure 7 we show how these empirically motivated,
redshift-dependent DM fractions, disk mass fractions, and
gas fractions interplay in our toy model framework to approx-
imately explain our observed TFR evolution, specifically the
TFR zero-point offsets at fixed circular velocity as a function
of cosmic time. Our observed KMOS3D TFR zero-points
of the bTFR (blue squares) and the sTFR (yellow stars) at
z ∼ 0.9 and z ∼ 2.3 are shown in relation to the local TFRs by
Lelli et al. (2016) and Reyes et al. (2011). The horizontal er-
ror bars of the KMOS3D data points indicate the spanned range
in redshift, while the vertical error bars show fit uncertainties.
For this plot, we also perform a correction for atomic gas at
high redshift:7 we follow the theoretical prediction that, at
fixed M∗, the ratio of atomic gas mass to stellar mass does not
change significantly with redshift (e.g. Fu et al. 2012). We use
the fitting functions by Saintonge et al. (2011) to determine
the atomic gas mass for galaxies with log(M∗ [M⊙]) = 10.50,
which corresponds to the average stellar mass of our TFR
galaxies at vref = 242 km/s in both redshift bins. We find
an increase of the zero-point of +0.04 dex at z ∼ 0.9 and
+0.02 dex at z ∼ 2.3. This is included in the figure.

We show as green lines our empirically constrained toy
model governed by Equations (5) and (6). This model as-
sumes a redshift evolution of fgas, fDM(Re ), and md as shown
by the blue, purple, and black lines, respectively, in inset
(a) in Figure 7 (details are given in Appendix D.2). In this
model, the increase in fgas is responsible for the deviating (and
stronger) evolution of the sTFR as compared to the bTFR. The
decrease of fDM(Re ) is responsible for the upturn/flattening
of the bTFR/sTFR evolution. The increase of md leads to a
TFR evolution which is steeper than what would be expected
from a model governed only by H (z). Our toy model evo-

7 Lelli et al. (2016) neglect molecular gas for their bTFR, but state that it
has generally a minor dynamical contribution.
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 toy model including
 fgas(z), fDM(z), md(z)
 as shown in inset (a)

R11 / L16

 sTFR KMOS3D

 bTFR KMOS3D

(a)

bTFR

sTFR

 fgas

 fDM(Re)

 md ×10

Figure 7. TFR zero-point offsets of the stellar and baryonic mass TFRs as a function of cosmic time. The KMOS3D data is shown as yellow stars
(sTFR) and blue squares (bTFR), in relation to the corresponding local normalizations by Reyes et al. (2011; R11) and Lelli et al. (2016b; L16).
The horizontal error bars of the KMOS3D data points indicate the spanned range in redshift, while the vertical error bars show fit uncertainties.
The bTFR data points are corrected for neglected atomic gas at z ∼ 0.9 and z ∼ 2.3, as detailed in the main text. The green lines show predictions
for the bTFR and sTFR evolution from our toy model (Equations (5) and (6)). This model takes into account the empirically motivated redshift
dependencies of fgas, fDM(Re), and md , in particular as they are shown in inset (a). Observational constraints come from Saintonge et al.
(2011) and Tacconi et al. (2017) for fgas(z), from Martinsson et al. (2013b,a) and W16 for fDM(Re, z), and from Moster et al. (2013) and
Burkert et al. (2016) for md (z), as detailed in Appendix D.2. Our proposed parametrizations are valid only up to z ≈ 2.6, as indicated by the
grey shading in the main figure and inset (a). As cyan shaded areas we indicate by way of example how the model TFR evolution would change
if DM fractions would be higher/lower by 0.1 at z = 0, z = 0.9, and z = 2.3 (horizontal ranges are ±0.1z). The observed TFR evolution is
reasonably matched by a model where λ and jbar/ jDM are constant, while fgas and md increase with redshift, and fDM(Re) decreases with
redshift.

lution is particularly sensitive to changes of fDM(Re ) with
redshift. We illustrate this by showing as cyan shaded areas
in Figure 7 how the toy model evolution would vary if we
would change only fDM(Re ) by ±0.1 at z = 0, z = 0.9, and
z = 2.3.

We note that the toy model zero-point offset at Re as de-
rived from Equations (5) and (6), and based on a thin expo-
nential baryon distribution, is comparable to our empirical
TFR offset for a thick exponential disk and using vcirc,max,
since the correction factors for the circular velocity measure
from thin to thick exponential disk, and from vcirc(Re ) to
vcirc,max ≈ vcirc(r2.2), are both of the order of ∼ 5 per cent and
approximately compensate one another. The toy model slope

(a = 3) is shallower than our adopted local slopes. In Ap-
pendix C we show that the usage of a reference velocity leads
to negligible zero-point differences of TFR fits with different
slopes.

Although our toy model is not a perfect match to the ob-
served TFR evolution, it reproduces the observed trends rea-
sonably well: for the sTFR, the zero-point decreases from
z = 0 to z ∼ 1, but there is no or only marginal evolution
between z ∼ 1 and z ∼ 2. In contrast, there is a significantly
non-monotonic evolution of the bTFR zero-point, such that
the zero-point first decreases from z = 0 to z ∼ 1, and then
increases again up to z ∼ 2. We note that although we show
the TFR evolution up to z = 3, the constraints on fDM(Re )
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and md are valid only up to z ≈ 2.6, as indicated in the figure
by the grey shading.

A more complete interpretation of our findings also at inter-
mediate redshift has to await further progress in observational
work. With the extension of the KMOS3D survey towards
lower mass galaxies and towards a more complete redshift
coverage in the upcoming observing periods, we might al-
ready be able to add in precision and redshift range to our
model interpretation. Our current data and models, however,
already show the potential of state-of-the-art high−z studies
of galaxies to constrain parameters which are important also
for theoretical work.

We would like to caution that our proposed model certainly
draws a simplified picture. For instance, the assumption of a
common scale length of the atomic gas as well as the molecu-
lar gas plus stars, as we did for this exercise, can only be taken
as approximate, given the high central surface mass densities
of our typical high−z galaxies (see § 4.3.1, and W16). Also,
the effective radii predicted by our “best fit” toy model are
10-30 per cent larger than what is observed. Other factors
not addressed in our approach might also come into play:
we did not explore in detail the possible effects of varying
λ or jbar/ jDM. Finally, it is important to keep in mind that
the model by Mo et al. (1998) was originally constructed to
match Milky Way-size haloes at z = 0, and its extension
towards massive galaxies up to redshifts of z = 2.6 might
be questionable. We therefore caution that our proposed toy
model perspective can only reflect general trends, and likely
misses other relevant ingredients.

Having in mind the limitations outlined above, we conclude
that the observed evolution of the mass-based TFRs can
be explained in the framework of virialized haloes in an
expanding ΛCDM universe, with galactic DM fractions,
disk mass fractions, and gas fractions that are evolving with
cosmic time. Adopting the proposed evolution of the model
parameters in Equations (5) and (6) as described above and
shown in inset (a) in Figure 7, namely at fixed vcirc increasing
fgas and md , and decreasing fDM(Re ) with redshift, leads to
a redshift evolution of the TFR which is non-monotonic, in
particular for the bTFR.

6. SUMMARY

We have investigated the mass-based Tully-Fisher relations
(TFRs) of massive star-forming disk galaxies between red-
shift z ∼ 2.3 and z ∼ 0.9 as part of the KMOS3D survey.
All our data are reduced and analyzed in a self-consistent
way. The spatially resolved nature of our observations en-
ables reliable modelling of individual galaxies, and allows
for a careful selection of objects based on kinematic proper-
ties and data quality. We have taken into account inclination,
beam-smearing, and instrumental broadening, and we have
incorporated the significant effects of pressure support to the
gravitational potential at these redshifts in our derivation of

the circular velocities.
We find that the TFR is clearly in place already at 0.6 <

z < 2.6 (§ 3.2). Its scatter increases with redshift, but we
did not find any second-order parameter dependencies when
adopting a local slope. At fixed vcirc,max, we find higher Mbar

but similar M∗ at z ∼ 2.3 as compared to z ∼ 0.9 (§ 3.3). This
highlights the important effects of the evolution of fgas, where,
at the same stellar mass, high−z star-forming galaxies (SFGs)
have significantly higher gas fractions than lower−z SFGs.
This strengthens earlier conclusions by Cresci et al. (2009)
in the context of the interpretation of TFR evolution. Since
we do not find a significant evolution of the sTFR between
z ∼ 2.3 and z ∼ 0.9, our observed TFR evolution together
with the decrease of fgas with decreasing redshift, implies that
the contribution of dark matter (DM) to the dynamical mass
on the galaxy scale has to increase with decreasing redshift
to maintain the dynamical support of the galaxy as measured
through vcirc,max. Our results complement the findings in other
recent work that higher−z SFGs are more baryon-dominated
(§ 4.1).

Comparing to other selected high−z TFR studies, we find
agreement with the work by Cresci et al. (2009); Price et al.
(2016); Tiley et al. (2016), but disagreement with the work
by Miller et al. (2011) (§ 3.4). The significant differences in
zero-point offsets of our high−z TFRs as compared to the
local relations by Reyes et al. (2011) and Lelli et al. (2016)
indicate an evolution of the TFR with cosmic time (§ 4.2).
From the local Universe to z ∼ 0.9 and further to z ∼ 2.3,
we find a non-monotonic TFR zero-point evolution which is
particularly pronounced for the bTFR.

To explain our observed TFR evolution, we present a toy
model interpretation guided by an analytic model of disk
galaxy evolution (Section 5). This model takes into account
empirically motivated gas fractions, disk mass fractions, and
central DM fractions with redshift. We find that the increasing
gas fractions with redshift are responsible for the increasingly
deviating evolution between the sTFR and the bTFR with
redshift. The decreasing central DM fractions with redshift
result in the flattening/upturn of the sTFR/bTFR zero-point
evolution at 0.9 < z < 2.3. This simple model matches our
observed TFR evolution reasonably well.

It will be interesting to make more detailed comparisons
between the growing amount of observations that can
constrain the TFR at high redshift, and the newest gener-
ation of simulations and semi-analytical models. Further
investigations of galaxies at lower (z . 0.7) and higher
(z & 2.5) redshifts using consistent reduction and analysis
techniques will help to unveil the detailed evolution of
the mass-based TFR, and to reconcile current tensions in
observational work. Another important quest is to provide
data which cover wider ranges in velocity and mass at these
high redshifts to minimize uncertainties in the fitting of the
data, and to investigate if the TFR slope changes with redshift.
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APPENDIX

A. THE EFFECTS OF SAMPLE SELECTION

For the discussion of the TFR at high redshift it is impor-
tant to be aware not only of the location of the subsample
of ‘TFR galaxies’ within a larger parent sample, but also of
the effect of the necessary corrections to the observed ve-
locity which ultimately lead to the high-z TFR. Figure A1
illustrates for three stellar mass bins (log(M∗ [M⊙])<10.3;
10.3<log(M∗ [M⊙])<10.8; 10.8<log(M∗ [M⊙])) how the
mean maximum rotation velocity changes through correc-
tions for beam-smearing and pressure support, when select-
ing for rotating disks, and when eventually selecting for ‘TFR
galaxies’ following the steps outlined in § 2.4.

The effect of beam-smearing on the rotation velocity is
with differences of & 0.1 dex significant for our galaxies,
translating into an offset in stellar mass of & 0.4 dex. Con-
sidering next the impact of turbulent motions, one can clearly
see how this is larger for lower-mass (and lower-velocity)
galaxies.8 This reflects the larger proportion of dispersion-
dominated systems at masses of log(M∗ [M⊙]) . 10. Cor-
recting the observed rotation velocity for these two effects
does not involve a reduction of the galaxy sample, and the
corresponding data points in Figure A1 include all 316 re-
solved KMOS3D galaxies. The procedure of selecting galax-
ies suitable for a kinematic disk modelling (W16; § 2.4) has
a noticeable effect in the full mass range explored here. It
becomes clear that the further, careful selection of galaxies
best eligible for a Tully-Fisher study has an appreciable effect

8 Taking turbulent motions into account also has a larger effect at higher
redshift due to the increase of intrinsic velocity dispersion with redshift. This
is not explicitly shown in Figure A1.

0.49 dex

0.44 dex

0.34 dex

0.19 dex

 vrot, no bs corr. (N=316)
 vrot, bs corr. (N=316)
 vcirc (incl. ps; N=316)
 vcirc, W16 (N=240)
 vcirc, TFR (N=135)

Figure A1. Illustration of different correction (black symbols) and
selection (colored symbols) effects on the mean maximum rotation,
or circular, velocity for three stellar mass bins, log(M∗ [M⊙])<10.3,
10.3<log(M∗ [M⊙])<10.8, and 10.8<log(M∗ [M⊙]). Black crosses
show the observed maximum velocity corrected for inclination but
not beam-smearing. Black circles include the beam-smearing cor-
rection. Black squares include the correction for pressure support,
leading to the maximum circular velocity as defined in Equation (3).
These data points consider all resolved KMOS3D galaxies. The cor-
responding mean circular velocities for the W16 sample are shown
as green diamonds, and the final TFR sample is shown as blue stars.
The final selection steps for our TFR sample detailed in § 2.4 have
a much smaller effect than the beam-smearing and pressure support
correction, and than the selection of galaxies suited for a kinematic
disk modelling.

on the mean velocity of about 0.02 − 0.03 dex, but is minor
as compared to the other effects discussed.

While we consider the selection of the ‘TFR sample’
important due to the vrot,max/σ0 cut and the reliable recovery
of the true maximum rotation velocity, we note that it only
leads to a small change in TFR parameters as compared to
the W16 sample (Figure A2).

B. AN ALTERNATIVE METHOD TO INVESTIGATE
TFR EVOLUTION

It is standard procedure in investigations of the TFR to adopt
a local slope for galaxy subsamples in different redshift bins,
and to quantify its evolution in terms of zero-point variations,
since high−z samples often span too limited a range in mass
and velocity to reliably constrain a slope. This method has two
shortcomings: first, potential changes in slope with cosmic
time are not taken into account. Second, every investigation
of TFR evolution is tied to the adopted slope which sometimes
complicates comparative studies.

We consider an alternative, non-parametric approach. In
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 Reyes+2011 (z~0)
 (a=3.60, b=2.36)

 z~0.9 
 ∆b=−0.42 dex

 z~2.3 
 ∆b=−0.37 dex

z∼ 0.9  (N=106)

z∼ 2.3  (N= 92)

 Lelli+2016 (z~0)
 (a=3.75, b=2.18)

 z~0.9 
 ∆b=−0.40 dex

 z~2.3 
 ∆b=−0.20 dex

z∼ 0.9  (N=106)

z∼ 2.3  (N= 92)

Figure A2. Fixed-slope fits for the sTFR (left) and the bTFR (right) using local (black) slopes to the W16 subsamples at z ∼ 0.9 (blue) and
z ∼ 2.3 (red). We find no (or only marginal) evolution of the sTFR zero-point in the studied redshift range, but significant evolution of the bTFR
given the typical fit uncertainties of δb = 0.05 dex. While there are changes of up to +0.07 dex when comparing to the TFR sample evolution
(Figure 5), mostly due to underestimated velocities when the maximum of the rotation curve is not covered by data, we see the same general
trends as for the refined TFR sample.

Figure B3 we show our TFR galaxies at z ∼ 2.3 (red) and
z ∼ 0.9 (blue) together with the local sample by Lelli et al.
(2016) (black) in the bTFR plane. In the mass bins labeled
‘A’, ‘B’, and ‘C’, we compute the weighted mean velocity
of each redshift and mass subsample. We then compare the
weighted mean velocities at different redshifts, as indicated in
the figure, and determine an average velocity difference from
combining the results from individual mass bins.

Although this approach is strongly limited by the number of
galaxies per mass bin, and by the common mass range which
is spanned by low- as well as high−z galaxies, its advantage
becomes clear: not only is the resulting offset in velocity
independent of any functional form usually given by a TFR,
but the method would also be sensitive to changes of the TFR
slope with redshift if the covered mass range would be large
enough.

For our TFR samples, we find an average difference in
velocity as measured from the average local velocity minus
the average high−z velocity, ∆log(vcirc [km/s]), of −0.119
between z = 0 and z ∼ 0.9, and of −0.083 between z = 0 and
z ∼ 2.3. This confirms our result presented in § 4.2, that the
bTFR evolution is not a monotonic function of redshift.

C. THE IMPACT OF MASS UNCERTAINTIES ON
SLOPE AND RESIDUALS OF THE TFR

The slope and scatter of the TFR are affected by the adopted
uncertainties in mass. In Figure C4 we show fit examples to
the bTFR of the full sample with varying assumptions for the
mass uncertainties, namely 0.05 ≤ δlog(Mbar [M⊙]) ≤ 0.4.
The corresponding changes in slope (from a = 2.11 to
a = 3.74) are well beyond the already large fit uncertainties
on the individual slopes, confirming that a proper assessment
of the mass uncertainties is essential. For simple linear re-
gression, the effect of finding progressively flatter slopes for
samples with larger uncertainties is known as ‘loss of power’,
or ‘attenuation to the null’ (e.g. Carroll et al. 2006). The rel-
evant quantity for our study, however, is the change in zero-
point offset, which is for the explored range only 0.02 dex.
This is due to the use of vref in Equation (4) which ensures
only little dependence of the zero-point b on the slope a.

Variations of the TFR slope naturally affect the TFR resid-
uals to the best-fit relation (see also Zaritsky et al. 2014). We
define the TFR residuals as follows:

∆log(vcirc) = log(vcirc) −
[

−b

a
+

log(M/M⊙ )

a
+ log(vref )

]

.

(C1)
To demonstrate the effect of changing the slope, we show
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A

B

C

A:

B:

C:

∆log(v)
[dex of km/s]

−0.118

−0.068

−0.170

−0.068

−0.099

average: −0.119 −0.083

 Lelli+2016 accurate distance sample at z~0

 KMOS3D TFR sample at z~0.9

 KMOS3D TFR sample at z~2.3

Figure B3. Our TFR galaxies at z ∼ 2.3 (red) and z ∼ 0.9 (blue)
together with the local sample by Lelli et al. (2016) (black) in the
bTFR plane. We calculate weighted mean velocities of the redshift
subsamples in the three mass bins labelled ‘A’, ‘B’, and ‘C’, in order
to investigate the TFR evolution in a way independent of the usual
functional form of the TFR. The velocity differences averaged over
the mass bins of ∆log(vcirc [km/s]) = −0.119 between z ∼ 0.9 and
z = 0, and of ∆log(vcirc [km/s]) = −0.083 between z ∼ 2.3 and
z = 0 are in agreement with our results presented in § 4.2, that the
redshift evolution of the bTFR is non-monotonic.

in Figure C5 the bTFR residuals as a function of Re . In the
upper panel, we show the residuals to a fit with baryonic mass
uncertainties of 0.05 dex, leading to a slope which approxi-
mately corresponds to the local slope by Lelli et al. (2016).
In the lower panel, we show the same for a fit adopting 0.4 dex
uncertainties for Mbar. While there is no correlation found for
the former case (Spearman correlation coefficient ρ = 0.02
with a significance ofσ = 0.8059), we find a weak correlation
when adopting δMbar = 0.4 dex (ρ = −0.19, σ = 0.0295).

We find a similar behaviour for baryonic (and stellar) mass
surface density, with no significant correlation between TFR
offset and mass surface density for the δMbar = 0.05 dex
fit, but a strong correlation for the δMbar = 0.4 dex fit (not
shown). No correlation for the δMbar = 0.05 dex fit residuals
is found for SFR surface density (ρ = −0.08,σ = 0.3557), but
a significant correlation with ρ = −0.37 and σ = 1.1 × 10−5

for the δMbar = 0.4 dex fit (Figure C6).
From this exercise it becomes clear that the high−z slope,

and with it the TFR residuals, are strongly dependent on the
accuracy of the mass and SFR measurements.

a = 2.11 ± 0.28
a = 2.17 ± 0.21
a = 2.50 ± 0.18
a = 3.08 ± 0.22
a = 3.49 ± 0.27
a = 3.74 ± 0.31

0.6<z<2.6  (N=135)

Figure C4. Effect of varying uncertainties for the baryonic mass
estimates on the slope of the bTFR for our full TFR sample, as
indicated in the legend (solid lines, least-squares fits). The resulting
best-fit slopes a vary by a factor of ∼ 2 for the explored range of
mass uncertainties. As dashed lines, we show the corresponding fits
using the Bayesian approach by Kelly (2007) which show a similar
behaviour.

D. DERIVATION OF THE TOY MODEL FOR TFR
EVOLUTION

D.1. The toy model following Mo et al. (1998)

In the following, we give more details on the derivation
of the TFR and the toy model evolution, closely following
Mo et al. (1998). In standard ΛCDM the DM halo mass Mh ,
virial velocity Vh , and virial radius Rh , are related as

Mh =

V 3
h

10G · H (z)
; Rh =

Vh

10H (z)
. (D2)

In this framework, Rh is defined as the radius where the
density reaches 200 times the critical value, ρh = 200ρcrit.

A plausible model for a SFG which has formed inside the
dark halo is a self-gravitating thin baryonic disk with an ex-
ponential surface density profile

Σ(r) = Σ0 e−r/Rd , (D3)

where Σ0 is the central surface density, related to the baryonic
disk mass as Mbar ∝ Σ0 R2

d
. In reality, disk galaxies feature

a finite thickness. This does not affect the scalings presented
here (see e.g. Courteau & Rix 1999; Binney & Tremaine
2008, and references therein). To associate the properties
of the baryonic disk to the dark halo, one can construct a
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 z~0.9
 z~1.5
 z~2.3

ρ =  0.02;  σ = 0.8059

δlog(M)=0.05dex

 z~0.9
 z~1.5
 z~2.3

ρ = −0.19;  σ = 0.0295

δlog(M)=0.40dex

Figure C5. Top panel: residuals of the bTFR as a function of
effective radius, using δMbar = 0.05 dex. The dashed lines show the
sample standard deviation. While we find no significant correlation
for our full sample (ρ = 0.02, σ = 0.8059), a slightly stronger
correlation for the highest redshift bin (red) is visible. Bottom
panel: same as above, but using δMbar = 0.4 dex. We find a weak
correlation for our full sample (ρ = −0.19, σ = 0.0295), and again
a slightly stronger correlation for the highest redshift bin.

simple model, further following Mo et al. (1998):

Mbar = md · Mh ; Rd =
1
√

2

(

Jbar

Mbar

Mh

Jh

)

λ · Rh, (D4)

where J is the total angular momentum. For rotation-
dominated systems, it holds that Re ≈ Rd · 1.68. The contri-
butions of baryons and DM to the circular velocity at a certain
radius can be written as

vcirc(r) =

√

v
2
bar(r) + v

2
DM(r). (D5)

The baryonic contribution can be computed, for instance,
using the expression for an infinitely thin exponential disk
(Freeman 1970),

v
2
bar(r) = 4πG Σ0Rd y

2[I0(y)K0 (y) − I1(y)K1(y)], (D6)

where y = r/(2Rd ), and Ii (y) and Ki (y) are the modified
Bessel functions of the first and second kind. At r = Re , this

 z~0.9
 z~1.5
 z~2.3

ρ = −0.08;  σ = 0.3557

δlog(M)=0.05dex

 z~0.9
 z~1.5
 z~2.3

ρ = −0.37;  σ = 1.1E−05

δlog(M)=0.40dex

Figure C6. Top panel: residuals of the bTFR as a function of SFR
surface density ΣSFR, using δMbar = 0.05 dex. The dashed lines
show the sample standard deviation. We find no correlation for our
fiducial fit (ρ = −0.08, σ = 0.3557). Bottom panel: same as
above, but using δMbar = 0.4 dex. We find a significant correlation
(ρ = −0.37, σ = 1.1 × 10−5).

equation becomes

v
2
bar(Re ) =

Mbar

Rd

· C′′, (D7)

where C′′ is a constant. The DM component can be de-
rived simply through a DM fraction at the radius of interest,
fDM(r) = v

2
DM(r)/v2

circ(r), or via adopting a full mass profile
(e.g. NFW or Einasto, Navarro et al. 1996; Einasto 1965).

Equations (D2) can be combined to

Mh = R3
h

H (z)2 102 G−1. (D8)

Via inserting Equations (D4) into Equation (D8), and via sub-
stituting Rd through a re-arranged Equation (D7), one arrives
at Equation (5) given in Section 5. After introducing the gas
fraction fgas = Mgas/Mbar, one arrives at Equation (6). These
equations predict a TFR evolution with a constant slope, but
evolving zero-point with cosmic time, depending not only on
H (z), but also on changes in md , fDM(Re ), and fgas, with
cosmic time.
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 sTFR KMOS3D

 bTFR KMOS3D

R11 / L16

bTFR H(z),m d
(z),f DM

(R e
,z)

sTFR H(z),fgas(z),

    md(z),fDM(Re,z)

 H(z)

 bTFR H(z),md(z)

 bTFR H(z),fDM(Re,z)

 sTFR H(z),fgas(z)

 sTFR H(z),fgas(z),md(z)

 sTFR H(z),fgas(z),fDM(Re,z)

Figure D7. TFR zero-point offsets of the stellar and baryonic mass TFRs as a function of cosmic time. The symbols show the KMOS3D data in
relation to the corresponding local normalizations by Reyes et al. (2011; R11) and Lelli et al. (2016b; L16), as shown in Figure 7. The black
line shows the TFR evolution for a model governed solely by H (z), following Equation (2). The colored lines show toy models for the bTFR
(blue) and the sTFR (orange) evolution for different combinations of additional redshift dependencies of fgas, fDM(Re ), or md , as detailed in
Appendix D, and as indicated in the legend. The grey lines show our final toy model following Equations (5) and (6) and including fgas(z),
fDM(Re, z), and md (z) as shown in inset (a) in Figure 7.

We note that deviations from the proposed slope (a = 3)
can be related to additional dependencies on vbar, e.g. of the
surface density Σ (Courteau et al. 2007).

D.2. Observational constraints on the redshift evolution of

fgas, md , and fDM(Re )

In the following paragraphs, we discuss the motivation for
the adopted redshift evolution of fgas, md , and fDM(Re ) in
the toy model context. Figure D7 summarizes the individ-
ual and combined effects of adopting the respective redshift
evolutions of fgas, md , and fDM(Re ) for the bTFR and sTFR
evolution.

D.2.1. The redshift evolution of fgas

For our toy model approach, we consider the gas fraction
fgas to be the sum of molecular and atomic gas mass divided by
the total baryonicmass, fgas = (Mgas,mol+Mgas,at)/(Mgas,mol+

Mgas,at + M∗). The evolution of the molecular gas mass-to-
stellar mass ratio is given through the scaling relation by
Tacconi et al. (2017):

log

(

Mgas,mol

M∗

)

≈ 0.12 − 3.62 ·
[

log(1 + z) − 0.66
]2

− 0.33 ·
[

log(M∗ [M⊙]) − 10.7
]

.

(D9)

Here, we do not take into account the additional dependencies
given in the full parametrization by Tacconi et al. on MS
offset, and offset from the M-R relation, but assume that the
model galaxies lie on these relations.

Locally, the galactic gas mass is dominated by atomic gas.
To account for atomic gas mass at z = 0, we use the fitting
functions presented by Saintonge et al. (2011). We use a local
reference stellar mass of log(M∗ [M⊙]) = 10.94, i.e. the stellar
mass corresponding to our reference velocity vref = 242 km/s
in the context of the sTFR fit by Reyes et al. (2011).

To account for atomic gas masses at z > 0, we follow the
theoretical prediction that, at fixed M∗, the ratio of atomic gas
mass to stellar mass does not change significantly with redshift
(e.g. Fu et al. 2012). We use again the fitting functions by
Saintonge et al. (2011) to now determine the atomic gas mass
for galaxies with log(M∗ [M⊙]) = 10.50, which corresponds
to the average stellar mass of our TFR galaxies at vref =

242 km/s in both redshift bins.
Between z = 0 and z = 0.9, we assume a smooth TFR evo-

lution, meaning that at fixed circular velocity, galaxies have
decreasing M∗ with increasing redshift, in order to compute
the gas fractions. Although we cannot quantify this assump-
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tion with our observations, we note that in comparing to our
data, only the relative offset in fgas (or any other parameter
discussed below) between z = 0, z = 0.9, and z = 2.3 is
relevant. Our assumption therefore serves mainly to avoid
sudden (unphysical) offsets in the redshift evolution of fgas.

Corresponding values of the gas mass fraction at z =

{0.0; 0.9; 2.3} are fgas ≈ {0.07; 0.36; 0.58}.

D.2.2. The redshift evolution of md

The baryonic disk mass fraction, md = Mbar/Mh , is not a
direct observable, since it depends on the usually unknown
DM halo mass. For the local Universe, we use the fitting
function by Moster et al. (2013) from abundance matching to
determine a stellar disk mass fraction, md,∗ = M∗/Mh . For
a stellar mass of log(M∗ [M⊙]) = 10.94, this gives md,∗ ≈
0.012. Again, we use the fitting functions by Saintonge et al.
(2011) to determine the corresponding gas mass, taking into
account contributions from helium via MHe ≈ 0.33 MHi.
This results in a baryonic disk mass fraction at z = 0 of
md ≈ 0.013.

The recent study by Burkert et al. (2016) finds a typ-
ical value of md = 0.05 for SFGs at 0.8 < z <

2.6 based on data from the KMOS3D and SINS/zC-SINF
(Förster Schreiber et al. 2009; Mancini et al. 2011) surveys.
These galaxies have masses similar to the galaxies in our TFR
sample. We adopt their value of md = 0.05 for 0.8 < z < 2.6.

Between z = 0 and z = 0.8 we assume a linear increase
of md . As for the atomic gas masses, we emphasize that this
assumption has primarily cosmetic effects, while the crucial
quantity is the relative difference in md between z = 0, z ∼
0.9, and z ∼ 2.3.

D.2.3. The redshift evolution of fDM(Re)

For the DM fraction of local disk galaxies, we follow Fig-
ure 1 by Courteau & Dutton (2015) which, among others,
shows galaxies from the DiskMass survey (Martinsson et al.
2013b,a). At vcirc = 242 km/s, DM fractions of local
disk galaxies lie roughly between fDM(r2.2) = 0.55 and
fDM(r2.2) = 0.75, with large scatter and uncertainties.

At higher redshift, W16 derived DM fractions from the

difference between dynamical and baryonic masses of the
KMOS3D subsample of 240 SFGs, which represents our par-
ent sample. Corresponding values, also corrected for mass
completeness, are given in their Table 1.

For convenience, we parametrize the evolution of the DM
fraction with redshift as follows: fDM(Re ) = 0.7 · exp[−(0.5 ·
z)2.5]. This gives an evolution which is somewhat stronger
than what is suggested by just taking the average values
provided by Courteau & Dutton (2015) and W16, but eas-
ily within the uncertainties presented in both papers. We
adopt this marginally stronger evolution to better match our
observed TFR offsets with the toy model.

Corresponding values of the DM fraction at z =

{0.0; 0.9; 2.3} are fDM(Re ) ≈ {0.70; 0.61; 0.17}.
The predicted evolution of the halo concentration param-

eter c between z = 2 and z = 0 for haloes of masses
that are relevant to this study (i.e. central stellar masses of
log(M∗ [M⊙]) ≈ 10.5 at z ∼ 2, and log(M∗ [M⊙]) ≈ 10.9
at z ∼ 0) goes from c ≈ 4 at z = 2 to c ≈ 7 at z = 0
(Dutton & Macciò 2014). This alone would increase the DM
fraction at Re by roughly 0.1. However, the possible effects of
adiabatic contraction or expansion of the halo as a response to
baryonic disk formation make theoretical predictions of the
central DM fractions uncertain (see e.g. the discussions by
Duffy et al. 2010; Dutton et al. 2016; Velliscig et al. 2014).

We note that our toy model evolution is particularly sen-
sitive to the parametrization of fDM(Re, z) which is in our
implementation with the simplistic description for md (z) re-
sponsible for the flattening/upturn of the sTFR/bTFR (see
Figure D7). The high value for the local DM fraction (which
would at r = Re rather be lower than at r = r2.2) as well
as the comparably strong evolution at z > 1 can certainly be
challenged.

E. PHYSICAL PROPERTIES OF GALAXIES IN THE
TFR SAMPLE

In Table E1 we list redshift z, stellar mass M∗, baryonic
mass Mbar, maximum modelled circular velocity vcirc,max, and
modelled intrinsic velocity dispersionσ0 of our TFR galaxies.
The full table is available in the online version of this paper.

Table E1. Physical properties of galaxies in our TFR sample in terms of redshift
z, stellar mass M∗, baryonic mass Mbar, maximum modelled circular velocity
vcirc,max, and modelled intrinsic velocity dispersion σ0.

# z log(M∗ [M⊙]) log(Mbar [M⊙]) vcirc,max [km/s] σ0 [km/s]

1 0.602 10.85 10.93 274.9 30.9

2 0.626 11.00 11.07 314.3 25.8

3 0.669 10.76 10.82 267.5 49.8

4 0.678 10.49 10.58 273.4 38.5

5 0.758 10.66 10.77 313.8 24.3
...

...
...

...
...

...
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