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ABSTRACT

We present the MUSE Hubble Ultra Deep Survey, a mosaic of nine MUSE fields covering 90% of the entire HUDF region with a
10-h deep exposure time, plus a deeper 31-h exposure in a single 1.15 arcmin2 field. The improved observing strategy and advanced
data reduction results in datacubes with sub-arcsecond spatial resolution (0′′.65 at 7000 Å) and accurate astrometry (0′′.07 rms). We
compare the broadband photometric properties of the datacubes to HST photometry, finding a good agreement in zeropoint up to
mAB = 28 but with an increasing scatter for faint objects. We have investigated the noise properties and developed an empirical way
to account for the impact of the correlation introduced by the 3D drizzle interpolation. The achieved 3σ emission line detection limit
for a point source is 1.5 and 3.1 × 10−19 erg s−1 cm−2 for the single ultra-deep datacube and the mosaic, respectively. We extracted
6288 sources using an optimal extraction scheme that takes the published HST source locations as prior. In parallel, we performed a
blind search of emission line galaxies using an original method based on advanced test statistics and filter matching. The blind search
results in 1251 emission line galaxy candidates in the mosaic and 306 in the ultradeep datacube, including 72 sources without HST
counterparts (mAB > 31). In addition 88 sources missed in the HST catalog but with clear HST counterparts were identified. This data
set is the deepest spectroscopic survey ever performed. In just over 100 h of integration time, it provides nearly an order of magnitude
more spectroscopic redshifts compared to the data that has been accumulated on the UDF over the past decade. The depth and high
quality of these datacubes enables new and detailed studies of the physical properties of the galaxy population and their environments
over a large redshift range.

Key words. galaxies: distances and redshifts – galaxies: high-redshift – cosmology: observations – methods: data analysis –
techniques: imaging spectroscopy – galaxies: formation

1. Introduction

In 2003 the Hubble Space Telescope (HST) performed a
1 Megasecond observation with its Advanced Camera for Sur-
veys (ACS) in a tiny 11 arcmin2 region located within the
Chandra Deep Field South: the Hubble Ultra Deep Field
(HUDF, Beckwith et al. 2006). The HUDF immediately became
the deepest observation of the sky. This initial observation

? Based on observations made with ESO telescopes at the La Silla
Paranal Observatory under programs 094.A-0289(B), 095.A-0010(A),
096.A-0045(A) and 096.A-0045(B).

was augmented a few years later with far ultraviolet images
from ACS/SBC (Voyer et al. 2009) and with deep near ultravi-
olet (Teplitz et al. 2013) and near infrared imaging (Oesch et al.
2010; Bouwens et al. 2011; Ellis et al. 2013; Koekemoer et al.
2013) using the Wide Field Camera 3 (WFC3). These datasets
have been assembled into the eXtreme Deep Field (XDF) by
Illingworth et al. (2013). With an achieved sensitivity rang-
ing from 29.1 to 30.3 AB mag, this emblematic field is
still, fourteen years after the start of the observations, the
deepest ever high-resolution image of the sky. Thanks to
a large range of ancillary data taken with other telescopes,
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including for example Chandra (Xue et al. 2011; Luo et al.
2017), XMM (Comastri et al. 2011), ALMA (Walter et al. 2016;
Dunlop et al. 2017), Spitzer/IRAC (Labbé et al. 2015), and the
VLA (Kellermann et al. 2008; Rujopakarn et al. 2016), the field
is also covered at all wavelengths from X-ray to radio.

Such a unique data set has been central to our knowledge
of galaxy formation and evolution at intermediate and high
redshifts. For example, Illingworth et al. (2013) have detected
14 140 sources at 5σ in the field including 7121 galaxies in
the deepest (XDF) region. Thanks to the exceptional panchro-
matic coverage of the Hubble images (11 filters from 0.3 to
1.6 µm) it has been possible to derive precise photometric red-
shifts for a large fraction of the detected sources. In partic-
ular, the latest photometric redshift catalog of Rafelski et al.
(2015) provides 9927 photometric redshifts up to z = 8.4.
This invaluable collection of galaxies has been the subject of
many studies spanning a variety of topics, including: the lu-
minosity function of high redshift galaxies (e.g., McLure et al.
2013; Finkelstein et al. 2015; Bouwens et al. 2015; Parsa et al.
2016), the evolution of star formation rate with redshift
(e.g., Ellis et al. 2013; Madau & Dickinson 2014; Rafelski et al.
2016; Bouwens et al. 2016; Dunlop et al. 2017), measure-
ments of stellar mass (e.g., González et al. 2011; Grazian et al.
2015; Song et al. 2016), galaxy sizes (e.g., Oesch et al. 2010;
Ono et al. 2013; van der Wel et al. 2014; Shibuya et al. 2015;
Curtis-Lake et al. 2016) and dust and molecular gas content
(e.g., Aravena et al. 2016b,a; Decarli et al. 2016b,a), along with
probes of galaxy formation and evolution along the Hubble se-
quence (e.g., Conselice et al. 2011; Szomoru et al. 2011).

Since the release of the HUDF, a significant effort has
been made with 8-m class ground-based telescopes to per-
form follow-up spectroscopy of the sources detected in the
deep HUDF images. Rafelski et al. (2015) compiled a list of
144 high confidence ground-based spectroscopic redshifts from
various instruments and surveys (see their Table 3): VIMOS-
VVDS (Le Fèvre et al. 2004), FORS1&2 (Szokoly et al. 2004;
Mignoli et al. 2005) VIMOS-GOODS (Vanzella et al. 2005–
2009; Popesso et al. 2009; Balestra et al. 2010) and VIMOS-
GMASS (Kurk et al. 2013). In addition, HST Grism spec-
troscopy provided 34 high-confidence spectroscopic redshifts:
GRAPES (Daddi et al. 2005) and 3DHST (Morris et al. 2015;
Momcheva et al. 2016). This large and long lasting investment
in telescope time has thus provided 178 high-confidence red-
shifts in the HUDF area since 2004. Although the number of
spectroscopic redshifts makes up only a tiny fraction (2%) of the
9927 photometric redshifts (hereafter photo-z), they are essential
for calibrating photo-z accuracy. In particular, by using the refer-
ence spectroscopic sample, Rafelski et al. (2015) found that their
photo-z measurements achieved a low scatter (less than 0.03 rms
in σNMAD) with a reduced outlier fraction (2.4−3.8%).

However, this spectroscopic sample is restricted to bright ob-
jects (the median F775W AB magnitude of the sample is 23.7,
with only 12% having AB > 25) at low redshift: the sample dis-
tribution peaks at z ≈ 1 and only a few galaxies have z > 2. The
behavior of spectrophotometric methods at high z and faint mag-
nitude is therefore poorly known. Given that most of the HUDF
galaxies fall in this regime (96% of the Rafelski et al. 2015, sam-
ple has AB > 25 and 55% has z > 2), it would be highly de-
sirable to obtain a larger number of high-quality spectra in this
magnitude and redshift range.

Besides calibrating the photo-z sample, though, there are
other important reasons to increase the number of sources in
the UDF with high quality spectroscopic information. Some key
astrophysical properties of galaxies can only be measured from

spectroscopic information, including kinematics of gas and stars,
metallicity, and the physical state of gas. Environmental studies
also require a higher redshift accuracy than those provided by
photo-z estimates.

The fact that only a small fraction of objects seen in the
HST images (representing the tip of the iceberg of the galaxy
population) have spectroscopic information shows how difficult
these measurements are. In particular, the current state-of-the-
art multi-object spectrographs perform well when observing the
bright end of galaxy population over wide fields. But, despite
their large multiplex, they are not well adapted to perform deep
spectroscopy in very dense environments. An exhaustive study
of the UDF galaxy population with these instruments would be
prohibitively expensive in telescope time and very inefficient.
Thus, by practical considerations, multi-object spectroscopy is
restricted to studying preselected samples of galaxies. Since pre-
selection implies that only objects found in broadband deep
imaging will be selected, this technique leaves out potential
emission-line only galaxies with faint continua.

Thankfully, with the advent of MUSE, the Multi Unit Spec-
troscopic Explorer at the VLT (Bacon et al. 2010) the state of
the art is changing. As expressed in the original MUSE science
case (Bacon et al. 2004), one of the project’s major goals is to
push beyond the limits of the present generation of multi-object
spectrographs, using the power of integral field spectroscopy to
perform deep spectroscopic observations in Hubble deep fields.

During the last MUSE commissioning run (Bacon et al.
2014) we performed a deep 27-h integration in a 1 arcmin2 re-
gion located in the Hubble Deep Field South (hereafter HDFS) to
validate MUSE’s capability in performing a blind spectroscopic
survey. With this data we were able to improve the number of
known spectroscopic redshifts in this tiny region by an order of
magnitude (Bacon et al. 2015). This first experiment not only ef-
fectively demonstrated the unique capabilities of MUSE in this
context, but has also led to new scientific results: the discovery of
extended Lyα halos in the circumgalactic medium around high
redshift galaxies (Wisotzki et al. 2016), the study of gas kine-
matics (Contini et al. 2016), the investigation of the faint-end of
the Lyα luminosity function (Drake et al. 2017a), the measure-
ment of metallicity gradients (Carton et al. 2017) and the prop-
erties of galactic winds at high z (Finley et al. 2017a).

The HDFS observations also revealed 26 Lyα emitting galax-
ies that were not detected in the HST WFPC2 deep broad-
band images, demonstrating that continuum-selected samples of
galaxies, even at the depth of the Hubble deep fields, do not
capture the complete galaxy population. This collection of high
equivalent width Lyα emitters found in the HDFS indicates that
such galaxies may be an important part of the low-mass, high-
redshift galaxy population. However, this first investigation in
the HDFS was limited to a small 1 arcmin2 field of view and will
need to be extended to other deep fields before we can assess its
full importance.

After the HDFS investigation, the next step was to start a
more ambitious program on the Hubble Ultra Deep Field. This
project was conducted as one of the guarantee time observing
(GTO) programs given by ESO in return for the financial invest-
ment and staff effort brought by the Consortium to study and
build MUSE. This program is part of a wedding cake approach,
consisting of the shallower MUSE-Wide survey in the CDFS and
COSMOS fields (Herenz et al. 2017) covering a wide area, along
with a deep and ultra-deep survey in the HUDF field covering a
smaller field of view.

This paper (hereafter Paper I) is the first paper of a series
that describes our investigation of the HUDF and assesses the
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science results. Paper I focuses on the details of the observations,
data reduction, performance assessment and source detection. In
Paper II (Inami et al. 2017) we describe the redshift analysis and
provide the source catalog. In Paper III (Brinchmann et al. 2017)
we investigate the photometric redshifts properties of the sam-
ple. The properties of CIII] emitters as Lyα alternative for red-
shift confirmation of high-z galaxies are discussed in Paper IV
(Maseda et al. 2017). In Paper V (Guérou et al. 2017) we ob-
tain spatially resolved stellar kinematics of galaxies at z ≈ 0.2–
0.8 and compare their kinematical properties with those inferred
from gas kinematics. The faint end of the Lyα luminosity func-
tion and its implication for reionization are presented in Paper VI
(Drake et al. 2017b). The properties of Fe ii* emission, as tracer
of galactic winds in star-forming galaxies is presented in Pa-
per VII (Finley et al. 2017b). Extended Lyα haloes around indi-
vidual Lyα emitters are discussed in Paper VIII (Leclercq et al.
2017). The first measurement of the evolution of galaxy merger
fraction up to z ≈ 6 is presented in Paper IX (Ventou et al. 2017)
and a detailed study of Lyα equivalent widths properties of the
Lyα emitters is discussed in Paper X (Hashimoto et al. 2017).

The paper is organized as follows. After the description of
the observations (Sect. 2), we explain the data reduction pro-
cess in detail (Sect. 3). The astrometry and broadband photo-
metric performances are discussed in Sect. 4. We then present
the achieved spatial and spectral resolution (Sect. 5), including
an original method to derive the spatial PSF when there is no
point source in the field. Following that, we investigate in Sect. 6
the noise properties in detail and derive an estimate of the lim-
iting emission line source detection. Finally, we explain how we
perform source detection and describe an original blind search
algorithm for emission line objects (Sect. 7). A summary con-
cludes the paper.

2. Observations

The HUDF was observed over eight GTO runs over two years:
September, October, November and December 2014, August,
September, October, and December 2015 and February 2016. A
total of 137 h of telescope in dark time and good seeing condi-
tions have been used for this project. This is the equivalent to
116 h of open shutter time which translates to 85% efficiency
when including the overheads.

2.1. The medium deep mosaic field

We covered the HUDF region with a mosaic of nine MUSE
fields (UDF-01 through UDF-09, respectively) oriented at a PA
of −42◦ as shown in Fig. 1. Each MUSE field is approximately a
square 1 × 1 arcmin2 in area. The dithering pattern used is simi-
lar to the HDFS observation scheme (Bacon et al. 2015): that is,
a set of successive 90◦ instrument rotations plus random offsets
within a 2′′ square box.

Given its declination (−27◦47′29′′), the UDF transits very
close to zenith in Paranal. When approaching zenith, the rotation
speed of the instrument optical derotator increases significantly
and its imperfect centering produces a non negligible wobble.
However, MUSE has the ability to perform secondary guiding,
using stars positioned in a circular ring around the field of view.
Image of these stars are affected by the derotator wobble in the
same way as the science field, so their shapes can be used to cor-
rect for the extra motion. The use of a good slow-guiding star
is therefore very important in maintaining field-centering during
an exposure, in order to get the best spatial resolution. Thus, the
location of each field in the mosaic was optimized to not only

XDF-NIR

ALMA-DF

UDF-03
UDF-02 UDF-01

UDF-06 UDF-05 UDF-04

UDF-07UDF-08UDF-09

UDF-10

30"

Fig. 1. Field location and orientation for the mosaic (UDF01−09, in
blue) and UDF10 (in red) fields, overlaid on the HST ACS F775W im-
age. The green rectangle indicates the XDF/HUDF09/HUDF12 region
containing the deepest near-IR observations from the HST WFC3/IR
camera. The magenta circle display the deep ALMA field from the
ASPECS pilot program (Walter et al. 2016). North is located 42◦ clock-
wise from the vertical axis.
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Fig. 2. Final exposure map images (averaged over the full wavelength
range) in hours for the udf-10 and mosaic fields. The visible stripes
correspond to regions of lower integration due to the masking process
(see Sect. 3.1.3).

provide a small overlap with adjacent fields but also to keep the
selected slow-guiding star within the slow-guiding region dur-
ing the rotation+dither process. Unfortunately, only a fraction
of the fields have an appropriate slow-guiding star within their
boundaries (UDF-02, 04, 07, and 08). Therefore, we preferen-
tially observed these fields when the telescope was near zenith,
while the others were observed when the zenith angle was larger
than 10◦.

The integration time for each exposure was 25 min. This
is long enough to reach the sky-noise-limited regime, even in
the blue range of the spectrum, but still short enough to limit
the impact of cosmic rays. Including the overheads it is pos-
sible to combine two exposures into an observing block span-
ning approximately 1 h. A total of 227 25-min exposures were
performed in good seeing conditions. A few exposures were
repeated when the requested conditions were not met (e.g., poor
seeing or cirrus absorption). As shown in Fig. 2 and taking
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into account a few more exposures that were discarded for var-
ious reasons during the data reduction process (see Sect. 3), the
mosaic field achieves a depth of ≈10 h over a contiguous area of
9.92 arcmin2 within a rectangle approximately 3.15′ × 3.15′ in
shape.

2.2. The udf-10 ultra deep field

In addition to the mosaic, we also performed deeper obser-
vations of a single 1′ × 1′ field, called UDF-10. The field
location1 was selected to be in the deepest part of the
XDF/HUDF09/HUDF12 area and to overlap as much as pos-
sible with the deep ALMA pointing from the ASPECS pilot pro-
gram (Walter et al. 2016). A different PA of 0◦ was deliberately
chosen to better control the systematics. Specifically, when this
field is combined with the overlapping mosaic fields (at a PA
of −42◦), the instrumental slice and channel orientation with re-
spect to the sky is different. This helps to break the symmetry
and minimize the small systematics that are left by the data re-
duction process. Care was taken to have a bright star within the
slow-guiding field in order to obtain the best possible spatial res-
olution, even when the field transits near zenith. Because of this
additional constraint, the field only partially overlaps with the
deep ALMA pointing. The resulting location is shown in Fig. 1.

Given that GTO observations are conducted in visitor mode
and not in service mode, we performed an equivalent GTO queue
scheduling within all GTO observing programs. A fraction of
the best seeing conditions were used for this field. During obser-
vation, we used the same dithering strategy and individual ex-
posure time as for the mosaic, obtaining a total of 51 25-min
exposures.

In the following we call udf-10 the combination of UDF-10
with the overlapping mosaic fields (UDF-01, 02, 04, and 05).
udf-10 covers an area of 1.15 arcmin2 and reaches a depth of
31 h (Fig. 2). Such a depth is comparable to the 27 h reached
by the HDFS observations (Bacon et al. 2015). However, as we
will see later, the overall quality is much better thanks to the
best observing conditions, an improved observational strategy
and refined data reduction process.

3. Data reduction

Performing reductions on such a large data set (278 science ex-
posures) is not a negligible task, but the control and minimiza-
tion of systematics is extremely important since we want to make
optimal use of the depth of the data. The overall process for
the UDF follows the data reduction strategy developed for the
HDFS (Bacon et al. 2015) but with improved processes and ad-
ditional procedures (see Conseil et al. 2017). It consists of two
major steps: the production of a datacube from each individual
exposure and the combination of the datacubes to produce the
final mosaic and udf-10 datacubes. These steps are described in
the following sections.

3.1. Data reduction of individual exposures

3.1.1. From the raw science data to the first pixtable

We first run the raw science data through the MUSE standard
pipeline version 1.7 dev (Weilbacher et al., in prep.). The indi-
vidual exposures are processed by the scibasic recipe which used
the corresponding daily calibrations (flatfields, bias, arc lamps,

1 The udf-10 field center is at αJ2000 = 03h32m38.7s, δJ2000 =
−27◦46′44′′.

twilight exposures) and geometry table (one per observing run)
to produce a table (herafter called pixtable) containing all pixel
information: location, wavelength, photon count and an estimate
of the variance. Bad pixels corresponding to known CCD de-
fects (columns or pixels) are also masked at this time. For each
exposure we use the illumination exposure to correct for flux
variations at the slices edges due to small temperature changes
between the morning calibration exposures and the science ex-
posures. From the adjacent illumination exposures taken before
and after the science, we select the one nearest in temperature.

The pipeline recipe scipost is then used to perform astromet-
ric and flux calibrations on the pixtable. We use a single refer-
ence flux calibration response for all exposures, created in the
following way. All flux calibration responses, obtained over all
nights, are scaled to the same mean level to remove transparency
variations. Then, we take the median of the stack to produce the
final reference response. We note that no sky subtraction is per-
formed at this stage because we use the sky flux to perform self-
calibration on each exposure.

A datacube is then created with the makecube pipeline
recipe, using the default 3D drizzling interpolation process. Each
exposure needs to be precisely recentered to correct for the dero-
tator wobble. Unlike the HDFS observations, only a few UDF
fields have bright point sources that can be used to compute this
offset. We have therefore developed an original method to derive
precise offset values with respect to the HST reference images.
This is described in detail in Sect. 5.1. The computed (∆α,∆δ)
offset values are then applied to the pixtable, which is then ready
for the self-calibration process.

3.1.2. Self calibration

Although the standard pipeline is efficient at removing most of
the instrumental signatures, one can still see a low-level foot-
print of the instrumental slices and channels. This arises from
a mix of detector instabilities and imperfect flatfielding, which
are difficult to correct for with standard calibration exposures.
We therefore use a self-calibration procedure2, similar in spirit
to the one used for the HDFS (Bacon et al. 2015) but enhanced
to produce a better correction. It is also similar to the CubeFIX
flat-fielding correction method, part of the CubExtractor pack-
age developed by Cantalupo (in prep.) and used, for instance, in
Borisova et al. (2016, see therein for a short description) but it
works directly on the pixtable. Compared to the HDFS version,
the major changes in the new procedure are to perform poly-
chromatic correction and to use a more efficient method to reject
outliers.

The procedure starts by masking all bright objects in the data.
The mask we use is the same for all exposures, calculated from
the white light image of the rough, first-pass datacube of the
combined UDF data set. The method works on 20 wavelength
bins of 200−300 Å. These bins have been chosen so that their
edges do not fall on a sky line. The median flux of each slice3

is computed over the wavelength range of the bin, using only

2 The self-calibration procedure is part of the MPDAF software
(Piqueras et al. 2017): the MUSE Python Data Analysis Framework.
It is an open-source (BSD licensed) Python package, developed and
maintained by CRAL and partially funded by the ERC advanced
grant 339659-MUSICOS. It is available at https://git-cral.
univ-lyon1.fr/MUSE/mpdaf
3 The slices are the thin mirrors of the MUSE image slicer which per-
form the reformatting of the entrance field of view into a pseudo slit
located at the spectrograph input focal plane.
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Fig. 3. Self-calibration on individual exposures. The reconstructed
white light image of a single exposure, highly stretched around the mean
sky value, is shown before (left panel) and after (right panel) the self
calibration process.

the unmasked voxels4 in the slice. Individual slices flux are then
offset to the mean flux of all slices and channels over the same
wavelength bin. Outliers are rejected using 15σ clipping based
on a the median absolute deviation (MAD). As shown in Fig. 3,
the new self calibration is very efficient in removing the remain-
ing flatfielding defects and other calibration systematics.

3.1.3. Masking

Some dark or bright regions at the edges of each slice stack
(hereafter called inter-stack defects) can be seen as thin, horizon-
tal strips in Fig. 3. These defects are not corrected by standard
flat-fielding or through self-calibration and appear only in deep
exposures of the empty field. It is important to mask them be-
cause otherwise the combinations of many exposures at different
instrumental rotation angles and with various on-sky offsets will
impact a broad region on the final datacubes.

To derive the optimum mask, we median-combine all ex-
posures, irrespective of the field, projected on an instrumental
grid (i.e., we stack based on fixed pixel coordinates instead of
the sky’s world coordinate system). In such a representation,
the instrumental defects are always at the same place, while sky
objects move from place to place according to the dithering pro-
cess. The resulting mask identifies the precise locations of the
various defects on the instrumental grid. This is used to build a
specific bad pixel table which is then added as input to the stan-
dard scibasic pipeline recipe.

In principle, to mask the inter-stack region one can simply
produce a datacubes using this additional bad pixel table with the
scibasic and scipost recipes. However, the 3D drizzle algorithm
used in scipost introduces additional interpolation effects which
prevents perfect masking. To improve the inter-stack masking,
we run the scibasic and scipost recipes twice: the first time with-
out using the specific bad pixel table, and the second time with
it. Using the output of the “bad-pixel” version of the cube, we
derive a new, 3D mask which we apply to the original cube, ef-
fectively removing the inter-stack bad data.

Even after this masking, a few exposures had some unique
problems which required additional specific masking. This was
the case for 2 exposures impacted by Earth satellite trails, and
for 9 exposures that show either high dark levels in channel 1 or
important bias residuals in channel 6. An individual mask was
built and applied for each of these exposures. The impact of all
masking can be easily seen in Fig. 2 where the stripes with lower
integration time show up in the exposure maps.

4 Voxel: volume sampling element (0′′.2 × 0′′.2 × 1.25 Å).
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Fig. 4. Spectrum extracted from a 1′′ diameter aperture in an empty
region of a single exposure datacube, before (left panel) and after (right
panel) the use of ZAP. The mean sky spectrum is shown in light gray.

3.1.4. Sky subtraction

The recentered and self-calibrated pixtable of each exposure is
then sky subtracted, using the scipost pipeline recipe with sky
subtraction enabled, and a new datacubes is created on a fixed
grid. For the mosaic field, we pre-define a single world coordi-
nate system (with a PA of −42◦) covering the full mosaic region,
and each of the nine MUSE fields (UDF-1 through 9) is projected
onto the grid. For the udf-10 a different grid is used (PA = 0◦).
Based on the overlap region, fields UDF-1, 2, 4, 5 and 10 are
projected onto this grid.

We then used ZAP (Soto et al. 2016), the principal compo-
nent analysis enhanced sky subtraction software developed for
MUSE datacubes. As shown in Fig. 4, ZAP is very efficient at
removing the residuals left over by the standard pipeline sky
subtraction recipe. The computed inter-stack 3D mask is then
applied to the resulting datacube.

3.1.5. Variance estimation

Variance estimation is a critical step that is used to evaluate the
achieved signal-to-noise ratio and to perform source extraction
and detection, as we will see later in Sect. 7. The pipeline first
records an estimate of the variance at each voxel location, us-
ing the measured photon counts as a proxy for the photon noise
variance and adding the read-out detector variance. This variance
estimate is then propagated accurately along each step of the re-
duction, taking into account the various linear transformations
that are performed on the pixtable. However, even after account-
ing for these effects, there are still problems with the variance
estimates.

The first problem is that the estimate is noisy, given that the
random fluctuations around the unknown mean value are used
in place of the mean itself for each pixel. The second problem
is related to the interpolation used to build the regular grid of
the datacube from the non-regular pixtable voxels. This interpo-
lation creates correlated noise in the output datacube as can be
seen in Fig. 5. To take into account this correlation, one should
in principle propagate both the variance information and the co-
variance matrix, instead of just the variance as the pipeline does.
However, this covariance matrix is far too large (≈125 times the
datacube size, even if we limit it to pixels within the seeing en-
velope and 5 pixels along the spectral axis) and thus cannot be
used in practice.
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Fig. 5. Spatially correlated properties in the MUSE udf-10 datacube
after drizzle interpolation. Each image shows the correlation between
spectra and their ±1, ±2 spatial neighbors. The correlation image is
shown for a single exposure datacube (left panel) and for the combined
datacube (right panel). Note that the correlation was performed on the
blue part of the spectrum to avoid the OH lines region.

The consequence is that the pipeline-propagated variance for
a single exposure exhibits strong oscillations along both the spa-
tial and spectral axes. When combining multiple datacube ex-
posures into one, the spatial and spectral structures of the vari-
ance are reasonably flat, since the various oscillations cancel out
in the combination. However, because we ignore the additional
terms of the covariance matrix, the pipeline-propagated noise es-
timation is still wrong in terms of its absolute value. Ideally, we
should then work only with pixtable to avoid this effect. How-
ever, this is difficult in practice because most of signal processing
and visualization routines (e.g., Fast Fourier Transform) require
a regularly sampled array.

To face this complex problem5 we have adopted a scheme to
obtain a more realistic variance estimate for faint objects where
the dominant source of noise is the sky. In this case the vari-
ance is a function of wavelength only. For faint objects, we will
always sum up the flux over a number of spatial and spectral
bins, such as (for example) a 1′′ diameter aperture to account
for atmospheric seeing and a few Å along the spectral axis. As
can be seen in Fig. 5, the correlation impact is strongly driven
by a pixel’s immediate neighbors but decreases very rapidly at
larger distances. The same behavior is found along the spectral
axis. Thus, if the 3D aperture size is large enough with respect to
the correlation size, the variance of the aperture-summed signal
should be equal to the original variance prior to resampling.

As a test to reconstruct the original pre-resampling variances,
we perform the following experiment. We start with a pixtable
that produces an individual datacube, which will later be com-
bined with the other exposures. We fill this pixtable with perfect
Gaussian noise (with a mean of zero and a variance of 1) and
then produce a datacube using the standard pipeline 3D drizzle.
As expected, the pixel-to-pixel variance of this test datacube is
less than 1 because of the correlation. The actual value depends
on the pixfrac drizzle parameter related to the number of neigh-
boring voxels which are used in the interpolation process. With
our pixfrac of 0.8, we measure a pixel-to-pixel standard devia-
tion of 0.60 in our experimental datacube. This value is almost
independant of wavelength as can be seen in Fig. 6. The ratio

1
0.60 is then the correction factor that needs to be applied to the
pixel-to-pixel standard deviation.

To overcome the previously mentioned problem of noise in
the pipeline-propagated variance estimator, we re-estimate the

5 Note that this variance behavior is not specific to these observations
but is currently present in all MUSE datacubes provided by the pipeline.
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Fig. 6. Example of estimated standard deviation corrected for corre-
lation effects (see text) in one exposure. Top: pixel-to-pixel standard
deviation of the experimental noisy datacube and adopted correction
factor. Bottom: pixel-to-pixel standard deviation of a real one-exposure
datacube after correcting for correlation effects.
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Fig. 7. Computed variation of FSF FWHM at 7750 Å (top panel) and
transparency (bottom panel) for all exposures of the UDF-04 field ob-
tained in seven GTO runs.

pixel-to-pixel variance directly from each datacube. We first
mask the bright sources and then measure the median absolute
deviation for each wavelength. The resulting standard deviation
is then multiplied by the correction factor to take into account the
correlations. An example is shown in Fig. 6. Note however that
this variance estimate is likely to be wrong for bright sources
which are no longer dominated by the sky noise, and thus no
longer have spatially constant variances. Given the focus of the
science objectives, this is not considered a major problem in this
work.

3.1.6. Exposure properties

In the final step before combining all datacubes, we evaluate
some important exposure properties, such as their achieved spa-
tial resolution and absolute photometry. We use the tool de-
scribed in Sect. 5.1 to derive the FWHM of the Moffat PSF fit
and the photometric correction of the MUSE exposure that gives
the best match with the HST broadband images. An example of
the evolution of the spatial resolution and photometric properties
of the UDF-04 field is given in Fig. 7. The statistics of exposure
properties for all fields is given in Table 1.

Control quality pages have been produced for all 278 indi-
vidual exposures displaying various images, spectra and indica-
tors for the steps of the data reduction. They were all visually

A1, page 6 of 20

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201730833&pdf_id=5
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201730833&pdf_id=6
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201730833&pdf_id=7


R. Bacon et al.: The MUSE Hubble Ultra Deep Field Survey. I.

Table 1. Observational properties of UDF fields.

Field N Fm Fσ Fmin Fmax Pm Pσ Pmin Pmax Fb Fr

01 26 0.62 0.12 0.46 1.01 0.98 0.07 0.78 1.08 0.71 0.57
02 28 0.60 0.11 0.42 0.82 1.01 0.02 0.97 1.06 0.69 0.56
03 24 0.61 0.09 0.46 0.76 1.01 0.03 0.95 1.09 0.72 0.55
04 26 0.59 0.10 0.43 0.91 0.98 0.05 0.86 1.07 0.72 0.54
05 25 0.63 0.08 0.46 0.79 0.95 0.07 0.77 1.01 0.72 0.58
06 24 0.62 0.06 0.55 0.78 0.99 0.03 0.95 1.07 0.71 0.56
07 24 0.59 0.08 0.46 0.72 0.99 0.03 0.93 1.07 0.68 0.54
08 24 0.63 0.08 0.43 0.81 0.98 0.04 0.86 1.09 0.72 0.58
09 26 0.67 0.07 0.56 0.83 0.98 0.03 0.90 1.03 0.76 0.62
10 51 0.60 0.08 0.42 0.77 1.02 0.04 0.86 1.09 0.71 0.55

Notes. For each field the number of individual exposures (N) is given, along with some statistics of the FWHM (arcsec) of the estimated point
spread function (FSF) at 7750 Å: the mean (Fm), standard deviation (Fσ), and min (Fmin) and max (Fmax) values. Statistics of the relative photo-
metric properties of each field are also given: the mean (Pm), standard deviation (Pσ), and min (Pmin) and max (Pmax) values. Additionally, the fit
FWHM (in arcsec) of the combined datacube FSF is given at blue (Fb at 4750 Å) and red (Fr at 9350 Å) wavelengths.

inspected, and remedy actions were performed for the identified
problems.

3.2. Production of the final datacubes

The 227 datacubes of the mosaic were combined, using the
estimated flux corrections computed from a comparison with
the reference HST image (see Sect. 5.1). We perform an aver-
age on all voxels, after applying a 5 sigma-clipping based on
a robust median absolute deviation estimate to remove outliers.
Except in the region of overlap between adjacent fields, or at
the edges of the mosaic, each final voxel is created from the
average of ≈23 voxels. The corrected variance is also propa-
gated and an exposure map datacube is derived (see Fig. 2).
The achieved median depth is 9.6 h. We also save the statis-
tics of detected outliers to check if specific regions or expo-
sures have been abnormally rejected. The resulting datacube is
saved as a 25 GB multi-extension FITS file with two extensions:
the data and the estimated variance. Each extension contains
(nx, ny, nλ) = 947 × 945 × 3681 = 3.29 × 109 voxels.

The same process is applied to the 51 UDF-10 proper dat-
acubes plus the 105 overlapping mosaic datacubes (fields 01,
02, 04, and 05) projected onto the same grid. We note that four
exposures with poor spatial resolution (FWHM > 0′′.9) have
been removed from the combination. In this case, ≈74 voxels
are averaged for each final voxel, leading to a median depth
of 30.8 h (Fig. 2). The resulting 2.9 GB datacube contains
(nx, ny, nλ) = 322 × 323 × 3681 = 3.8 × 108 voxels. Note that
the datacubes presented in this paper have the version 0.42.

To ensure that there is no background offset, we subtract
the median of each monochromatic image from each cube, af-
ter proper masking of bright sources. The subtracted offsets are
small: 0.02 ± 0.03 × 10−20 erg s−1 cm−2 Å−1. The reconstructed
white light images for the two fields, obtained simply by averag-
ing over all wavelengths, are shown in Fig. 9.

To show the progress made since the HDFS publication
(Bacon et al. 2015), we present in Fig. 8 a comparison between
the HDFS cube and the udf-10 cube which achieves a similar
depth. There are obvious differences: the bad-edge effect present
in HDFS has now disappeared, the background is much flatter
in the udf-10 field, while the HDFS shows negative and positive
large scale fluctuations. The sky emission line residuals are also
reduced as shown in the background spectra comparison. One
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Fig. 8. Visual comparison between udf-10 (left) and HDFS (right) dat-
acubes. White-light images are displayed in the top panels and exam-
ples of spectra extracted in an empty central region (green circle) are
displayed in the bottom panels.

can also see some systematic offsets in the HDFS background at
blue wavelengths which are not seen in the udf-10.

4. Astrometry and photometry

In the next sections we derive the broadband properties of the
mosaic and udf-10 datacubes by comparing their astrometry and
photometry to the HST broadband images.

We derive the MUSE equivalent broadband images by a sim-
ple weighted mean of the datacubes using the ACS/WFC fil-
ter response (Fig. 10). Note that the F606W and F775W filters
are fully within the MUSE wavelength range, but the two oth-
ers filters (F814W and F850LP) extend slightly beyond the red
limit. The corresponding HST images from the XDF data re-
lease (Illingworth et al. 2013) are then broadened by convolu-
tion to match the MUSE PSF (see Sect. 5.1) and the data are
rebinned to the MUSE 0′′.2 spatial sampling. For the compari-
son with the mosaic datacube, we split the HST images into the
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Fig. 10. ACS/WFC HST broadband filter response. The gray area indi-
cates the MUSE wavelength range.

corresponding nine MUSE sub-fields in order to use the specific
MUSE PSF model for each field.

4.1. Astrometry

The NoiseChisel software (Akhlaghi & Ichikawa 2015) is used
to build a segmentation map for each MUSE image. NoiseChisel
is a noise-based non-parametric technique for detecting nebu-
lous objects in deep images and can be considered as an alter-
native to SExtractor (Bertin & Arnouts 1996). NoiseChisel de-
fines “clumps” of detected pixels which are aggregated into a
segmentation map. The light-weighted centroid is computed for
each object and compared to the light-weighted centroid derived
from the PSF-matched HST broadband image using the same
segmentation map.
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Fig. 11. Mean astrometric errors in α, δ and their standard deviation
in HST magnitude bins. The error bars are color coded by HST filter:
blue (F606W), green (F775W), red (F814W) and magenta (F850LP).
The two different symbols (circle and arrow) identify respectively the
mosaic and udf-10 fields. Note that mosaic data are binned in 1-mag
steps while udf-10 data points are binned over 2-mag steps in order to
get enough points for the statistics.

The results of this analysis are given in Fig. 11 for both fields
and for the four HST filters. As expected, the astrometric preci-
sion is a function of the object magnitude. There are no major
differences between the filters, except for a very small increase of
the standard deviation of the reddest filters. For objects brighter
than AB 27, the mean astrometric offset is less than 0′′.035 in
the mosaic and less than 0′′.030 in the udf-10. The standard de-
viation increases with magnitude, from 0′′.04 for bright objects
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Fig. 12. Differences between MUSE and HST AB broadband magni-
tudes. The gray points show the individual measurements for the F775W
filter. The mean AB photometric errors and their standard deviations in
HST magnitude bins are shown as error bars, color coded by HST filter:
blue (F606W), green (F775W) and red (F814W). Top and bottom panels
respectively show the mosaic and udf-10 fields.

up to 0′′.15 at AB > 29. For galaxies brighter than AB 27, we
achieve an astrometric precision better than 0′′.07 rms, i.e., 10%
of the spatial resolution.

4.2. Photometry

We now compute the broadband photometric properties of our
data set, using a process similar to the previous astrometric mea-
surements. This time, however we use the NoiseChisel segmen-
tation maps generated from the PSF-matched HST broadband
images. The higher signal-to-noise of these HST images allows
us to identify more (and fainter) sources than in the MUSE
equivalent image. The magnitude is then derived by a simple
sum over the apertures identified in the segmentation map. We
note that the background subtraction was disabled in order to
measure the offset in magnitude between the two images. The
process is repeated on the MUSE image using the same segmen-
tation map and the magnitude difference saved for analysis. Note
also that we exclude the F850LP filter in this analysis because
a significant fraction of its flux (≈20%) lies outside the MUSE
wavelength range.

The result of this comparison is shown in Fig. 12. The
MUSE magnitudes match their HST counterparts well, with lit-
tle systematic offset up to AB 28 (∆m < 0.2). For fainter ob-
jects, MUSE tends to under-estimate the flux with an offset more
prominent in the red filters. The exact reason for this offset is not
known but it may be due to some systematic left over by the
sky subtraction process. As expected, the standard deviation in-
creases with magnitude and is larger in the red than in the blue,
most probably because of sky residuals. For example, the mo-
saic scatter is 0.4 mag in F606W at 26.5 AB, but is a factor of
two larger in the F775W and F814W filters at the same magni-
tude. By comparison, the deeper udf-10 datacube achieves better
photometric performance with a measured rms that is 20−30%
lower than in the mosaic.

5. Spatial and spectral resolution

A precise knowledge of the achieved spatial and spectral reso-
lution is key for all subsequent analysis of the data. For ground
based observations where the exposures are obtained under var-
ious, and generally poorly known, seeing conditions, knowledge

of the spatial PSF is also important for each individual exposure.
For example, exposures with bad seeing will add more noise than
signal for the smaller sources and should be discarded in the fi-
nal combination of the exposures. Note that the assessment of
the spatial PSF for each individual exposure does not need to be
as precise as for the final combined datacube.

The spectral resolution is not impacted by the change of
atmospheric conditions and the instrument is stable enough to
avoid the need of a spectral PSF evaluation for each individual
exposure. However, good knowledge of the spectral resolution
in the final datacube is also required.

In the next sections we describe the results and the methods
used to derive these PSFs. To distinguish between the spectral
and spatial axes, we name the spectral line spread function and
the field spatial point spread function, LSF and FSF, respectively.

5.1. Spatial point spread function (FSF)

In the ideal case of a uniform FSF over the field of view, its eval-
uation is straightforward if one has a bright point source in the
field. If we assume a Gaussian shape, then only one parameter,
the FWHM, fully characterizes the FSF. In our case we are not
far from this ideal case, because the MUSE field is quite small
with respect to the telescope field of view and its image quality
(∼0′′.2) is much better than the seeing size. However, given the
long wavelength range of MUSE, one cannot neglect the wave-
length dependence of the seeing. For the VLT’s large aperture,
a good representation of the atmospheric turbulence is given by
Tokovinin (2002) in the form of a finite outer scale von Karman
turbulence model. It predicts a nearly linear decrease of FWHM
with respect to wavelength, with the slope being a function of
the atmospheric seeing and the outer scale turbulence.

During commissioning, a detailed analysis of the MUSE FSF
showed that it was very well modeled by a Moffat circular func-
tion [1 − (r/α)β]−

1
2 with β constant and a linear variation of

α with wavelength. The same parametrization was successfully
used in the HDFS study (Bacon et al. 2015) using the brightest
star (R = 19.6) in the field. However, most of MUSE UDF fields
do not have such a bright star and the majority of our fields have
no star with R < 23 at all.

Fortunately, broadband HST images of the UDF exist for
many wavelengths. In particular, as shown in Fig. 10, the wave-
length coverage of four HST imaging filters, F606W, F775W,
F814W and F850LP falls entirely or partially within the MUSE
wavelength range (4750−9350 Å). If one of these images is con-
volved with the MUSE FSF, and the equivalent MUSE image is
convolved with the HST FSF, then the resulting images should
end up with the same combined FSF. Thus, the similarity of
HST and MUSE images that have been convolved with models
of each other’s FSFs, can be used to determine how well those
models match the data.

In the following equations, suffixes of m and h are used
to distinguish between symbols associated with the MUSE and
HST images, respectively. Equation (1) models a MUSE image
(dm) as a perfect image of field sources (s) convolved with the
MUSE FSF (ψm), summed with an image of random noise (nm).
Equation (2) is the equivalent equation for an HST image of the
same region of the sky, but this time convolved with the HST
FSF (ψh), and summed with a different instrumental noise im-
age, nh.

dm = s × ψm + nm, (1)
dh = s × ψh + nh. (2)
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When these images are convolved with estimated models of each
other’s FSF, the result is as follows:

dm × ψ
′
h = s × ψm × ψ

′
h + nm × ψ

′
h, (3)

dh × ψ
′
m = s × ψh × ψ

′
m + nh × ψ

′
m. (4)

In these equations, ψ′m and ψ′h denote models of the true MUSE
and HST FSF profiles, ψm and ψh. The following equation shows
the difference between these two equations;

dm × ψ
′
h − dh × ψ′m = s × (ψm × ψ′h − ψh × ψ′m)

+ (nm × ψ
′
h − nh × ψ′m). (5)

The magnitude of the first bracketed term can be minimized by
finding accurate models of the MUSE and HST FSFs. However,
this is not a unique solution, because the magnitude can also be
minimized by choosing accurate models of the FSF profiles that
have both been convolved by an arbitrary function. To unam-
biguously evaluate the accuracy of a given model of the MUSE
FSF, it is thus necessary to first obtain a reliable independent es-
timate of the HST FSF. This can be achieved by fitting an FSF
profile to bright stars within the wider HST UDF image.

Minimizing the first of the bracketed terms of Eq. (5) does
not necessarily minimize the overall equation. The noise contri-
bution from the second of the bracketed terms decreases steadily
with increasing FSF width, because of the averaging effect of
wider FSFs, so the best-fit MUSE FSF is generally slightly wider
than the true MUSE FSF. However provided that the image con-
tains sources that are brighter than the noise, the response of the
first bracketed term to an FSF mismatch is greater than the de-
crease in the second term, so this bias is minimal.

In summary, with a reliable independent estimate of the
HST FSF6, a good estimate of the MUSE FSF can be obtained by
minimizing the magnitude of Eq. (5), as a function of the model
parameters of the FSF. In practice, to apply this equation to dig-
itized images, the pixels of the MUSE and HST images must
sample the same positions on the sky, have the same flux cali-
bration, and have the same spectral response. A MUSE image
of the same spectral response as an HST image can be obtained
by performing a weighted mean of the 2D spectral planes of a
MUSE cube, after weighting each spectral plane by the integral
of the HST filter curve over the bandpass of that plane.

HST images have higher spatial resolutions than MUSE im-
ages, so the HST image must be translated, rotated and down-
sampled onto the coordinates of the MUSE pixel grid. Before
down-sampling, a decimation filter must be applied to the HST
image, both to avoid introducing aliasing artifacts, and to re-
move noise at high spatial frequencies, which would otherwise
be folded to lower spatial frequencies and reduce the signal-to-
noise ratio (S/N) of the downsampled image. The model of the
HST FSF must then be modified to account for the widening ef-
fect of the combination of the decimation filter and the spatial
frequency response of the widened pixels.

Once the HST image has been resampled onto the same pixel
grid as the MUSE image, there are usually still some differences
between the relative positions of features in the two images, due
to derotator wobble and/or telescope pointing errors. Similarly,
after the HST pixel values have been given the same flux units
as the MUSE image, the absolute flux calibration factors and
offsets of the two images are not precisely the same. To correct
these residual errors, the MUSE FSF fitting process has to simul-
taneously fit for position corrections and calibration corrections,
while also fitting for the parameters of the MUSE FSF.
6 In practice we compute the Moffat fit for a few bright stars in the field
for each HST filter.

The current fitting procedure does not attempt to correct for
rotational errors in the telescope pointing, or account for focal
plane distortions. Focal plane distortions appear to be minimal
for the HST and MUSE images, and only two MUSE images
were found to be slightly rotated relative to the HST images. In
the two discrepant cases, the rotation was measured by hand, and
corrected before the final fits were performed.

As described earlier, the FSF of a MUSE image is best mod-
eled as a Moffat function. Moffat functions fall off relatively
slowly away from their central cores, so a large convolution ker-
nel is needed to accurately convolve an image with a MUSE FSF.
Convolution in the image plane is very slow for large kernels, so
it is more efficient to perform FSF convolutions in the Fourier
domain. Similarly, correcting the pointing of an image by a frac-
tional number of pixels in the image domain requires interpola-
tion between pixels, which is slow and changes the FSF that is
being measured. In the Fourier domain, the same pointing cor-
rections can be applied quickly without interpolation, using the
Fourier-transform shift theorem. For these reasons, the FSF fit-
ting process is better performed entirely within the Fourier do-
main, as described below.

Let b and γ be the offset and scale factor needed to match
the HST image photometry to that of the MUSE image, and let ε
represent the vector pointing-offset between the HST image and
the MUSE image. When the left side of Eq. (5) is augmented to
include these corrections, the result is the left side of the follow-
ing equation:

dm ×ψ
′
h − γdh ×ψ

′
m ×∆(p−ε) + b

FT
→DmΨh

′ − γDhΨm
′e−i2π f ε+b.

(6)

Note that the pointing correction vector (ε) is applied by con-
volving the HST image by the shifted Dirac delta function,
∆(p− ε), where p represents the array of pixel positions.

The right side of Eq. (6) is the Fourier transform of the left

side, with dh
FT
→ Dh, dm

FT
→ Dm, ψm

FT
→ Ψm and ψh

FT
→ Ψh. The

spatial frequency coordinates of the Fourier transform pixels are
denoted f . Note that all of the convolutions on the left side of the
equation become simple multiplications in the Fourier domain.
The exponential term results from the Fourier transform shift
theorem, which, as shown above, is equivalent to an image-plane
convolution with a shifted delta function.

The fitting procedure uses the Levenberg-Marquardt non-
linear least-squares method to minimize the sum of the squares
of the right side of Eq. (6). The procedure starts by obtaining
the discrete Fourier transforms, Dm, Dh, and Ψh

′ using the Fast
Fourier Transform (FFT) algorithm. Then for each iteration of
the fit, new trial values are chosen for γ, b, ε and the model pa-
rameters of the MUSE FSF, ψm. There is no analytic form for
the Fourier transform of a 2D Moffat function, so at each itera-
tion of the fit, the trial MUSE FSF must be sampled in the image
plane, then transformed to the Fourier domain using an FFT. It
is important to note that to avoid significant circular convolu-
tion, all images that are passed to the FFT algorithm should be
zero padded to add margins that are at least as wide as the core
of the trial Moffat profiles and the maximum expected pointing
correction.

MUSE and HST images commonly contain pixels that have
been masked due to instrumental problems, or incomplete field
coverage. In addition, areas of the images that contain nearby
bright stars should be masked before the FSF procedure, because
the effect of the proper motion of these stars is often sufficiently
large between the epochs of MUSE and HST observations, to
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Fig. 13. An example demonstrating the success of the FSF fitting tech-
nique. The upper left panel shows the udf-10 data, rescaled by the
equivalent HST F775W broadband filter. The upper middle panel shows
the corresponding HST F775W image, after it has been resampled onto
the pixel grid of the MUSE image and convolved with the best-fit
MUSE FSF. The upper right panel presents the residual of these two
images, showing that only the instrumental background of the MUSE
image remains. The lower panels show the corresponding images in the
Fourier space where the fit is performed.
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Fig. 14. FSF Fitting results for all mosaic and udf-10 fields. For each
field, 4 fit MOFFAT FWHMs corresponding to 4 HST filters (F606W,
F775W, F814W, F850LP) are displayed, together with the linear fit. The
UDF10-ALL is for the combined depth of the udf-10 field and its asso-
ciated mosaic fields (1, 2 ,4 and 5).

make it impossible to line up the stars without misaligning other
sources. Since the FFT algorithm cannot cope with missing sam-
ples, masked pixels must be replaced by a finite value. Here, we
choose a replacement value of zero, since this choice makes the
fit of the calibration scale factor (γ) insensitive to the existence
of missing pixels. However, a contiguous region of zero-valued
pixels can fool the algorithm, making it think the region (which
is significantly different from its surroundings) is a real feature
to be fit. To avoid this, we first subtract the median flux value
from each image before replacing the masked pixels with zero.
This decreases the contrast around the masked pixels, increasing
the probability that they will blend into the background and be
ignored by the fitting routine. The median-subracted flux value
is saved and folded into the fit of the background offset parame-
ter (b).

Figure 13 shows an example of how well this method works
in practice and Fig. 14 displays the fitting results obtained for all
fields. The fit values for the combined datacubes of each field are
given in Table 1.

5.2. Spectral line spread function (LSF)

To measure the LSF, we produce combined datacubes similar to
the udf-10 and mosaic datacubes but without including the sky
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Fig. 15. Measured mean LSF FWHM on the udf-10 (blue line) and
mosaic (red line) datacubes. The symbols represent measured values
while the solid line represents the polynomial fit. The shaded area shows
the ±1σ spatial standard deviation.

subtraction. From these, we calculate the LSF using 19 groups
of 1−10 sky lines. While the lines within each group are unre-
solved at the MUSE spectral resolution, they must be accounted
for to construct a proper LSF model. For each group we used the
CAMEL software (see Epinat et al. 2012; Contini et al. 2016, for
a description of the software) to fit a Gaussian to each line, keep-
ing the relative position and FWHM identical for all lines in the
group. This is performed over all spaxels in the datacube, after
applying a Gaussian spatial smoothing kernel of 0′′.4 FWHM to
improve the S/N of the faint sky lines.

We show the mean and standard deviation of the resulting
FWHM as a function of wavelength in Fig. 15. Note that there is,
as expected, little difference between the udf-10 and mosaic dat-
acubes. The FWHM of the modeled LSF varies smoothly with
wavelength, ranging from 3.0 Å (at the blue end) to 2.4 Å (at
7500 Å). It remains largely constant over the field of view, with
an average standard deviation of 0.05 Å. The FWHM variations
as a function of wavelength F(λ) (in Å) are best described by
polynomial functions:

Fmosaic(λ) = 5.835 × 10−8λ2 − 9.080 × 10−4λ + 5.983 (7)
Fudf10(λ) = 5.866 × 10−8λ2 − 9.187 × 10−4λ + 6.040. (8)

We note that the true LSF shape is not actually Gaussian, but in-
stead more square in shape. The simple Gaussian model is how-
ever a good approximation for most usage.

6. Noise properties and limiting flux

6.1. Noise properties

The empirical procedure described in Sect. 3.1.5 should correct
the variance estimate for the correlation added by the 3D drizzle
interpolation process. We thus expect the propagated variance of
the final datacubes to be correct in that respect. To check that this
is indeed the case, we estimate the variance from a set of empty
regions in the datacubes, selected to have similar integration time
using the exposure maps shown in Fig. 2. For the udf-10 field,
we select 63 circular apertures of 1′′ diameter in regions with
31±0.3 h of integration time. In the mosaic we select 991 similar
apertures in regions with 9.9 ± 0.4 h of integration time. The
locations of all selected regions are shown in Fig. 16.

We calculate the corresponding propagated variance spec-
trum by taking the median of the stack of all apertures. The
spectrum generated from the udf-10 field, along with the ratio
between this standard deviation and the estimated standard devi-
ation calculated in Sect. 3.1.5 are shown in Fig. 17. As expected,
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Fig. 16. Selected apertures used to evaluate the variance in empty re-
gions of the udf-10 (left panel) and mosaic (right panel) datacubes.
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Fig. 17. Lower panel: median value of the propagated noise standard
deviation for the 63 selected 1′′ diameter apertures (see text). Top panel:
ratio of the propagated to the estimated standard deviations.

the computed ratio is around unity7 and constant with wave-
length, showing that the propagated variance is now a good rep-
resentation of the true variance within an aperture. In the top
panel of Fig. 17 it is clear that there is a mismatch between es-
timated and propagated standard deviation at wavelengths that
contain bright sky emission lines. The difference is due to the
PCA ZAP process and discussed in detail in Sect. 5 of Soto et al.
(2016): when ZAP is applied to the individual datacubes (see
Sect. 3.1.4) it tends to preferentially remove the strongest sys-
tematic signals left by the imperfect sky subtraction at the lo-
cations of the bright sky lines. For the brightest OH lines this
results in an over-fitting of the noise which then biases the es-
timated variance. In that respect, the propagated variance is a
better representation of the true variance. The same behavior is
found for the mosaic datacube.

Using the set of empty apertures we are also able to inves-
tigate the noise probability density distribution. A normal test
(Pearson et al. 1977) returns a p-value of ≈0.3, demonstrating
that the noise probability density distribution is normal with a
high probability (see the example in Fig. 18).

7 According to Fig. 17 the propagated standard deviation underesti-
mate the compute values by ≈10−15% but we did not attempt to correct
for this small offset.
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Fig. 18. Example of a normalized data histogram derived from an empty
aperture of 1′′ diameter at 7125 Å in the udf-10 datacube. The solid line
displays the best fit Normal PDF with a standard deviation of 0.33 ×
10−20 erg s−1 cm−2 Å−1.
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Fig. 19. 1σ surface brightness limit for the mosaic (bottom) and udf-10
(top) datacubes computed for an aperture of 1′′ × 1′′. The blue curve
displays the average value and the green area the rms over the field of
view.

6.2. Limiting line flux

From the noise properties one can derive the limiting line flux.
We start to evaluate the 1σ emission line surface brightness limit
by computing the (sigma-clipped) mean and standard deviation
of the propagated variance over the complete field of view for
the udf-10 and mosaic datacubes. The resulting emission line
surface brightness limit is shown in Fig. 19. A 1σ emission line
sensitivity of 2.8 and 5.5 × 10−20 erg s−1 cm−2 Å−1 arcsec−2 for
an aperture of 1′′ × 1′′ is reached in the 7000−8500 Å range for
the udf-10 and mosaic datacubes, respectively.

Note that the measured value in the udf-10 (2.8) is slightly
better than what we would have predicted from the mosaic value
(3.2), taking into account the

√
3 factor predicted by the differ-

ence in integration time. It shows that the observational strategy
used for the udf-10 (see Sect. 2) is effective in further reducing
the systematics which are still present in the mosaic datacube.

This result compares advantageously with the early
HDFS observations (Bacon et al. 2015) which reached
a 1σ emission line surface brightness limit of 4.5×
10−20 erg s−1 cm−2 Å−1 arcsec−2 in the same aperture. The
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Fig. 20. 3σ emission line flux detection limit for point-like sources for
the mosaic at 10 h integration time (in blue) and udf-10 at 31 h integra-
tion time (in red) datacubes. The full scale sky lines dominated limiting
flux is shown in the top panel, while values outside bright sky lines are
shown in the bottom panel.

1.6 better sensitivity8 achieved with the udf-10 datacube is
the result of the extensive work performed on observational
strategy and data reduction since 2014. While the performance
of the first release of the HDFS datacube was dominated by
systematics, we have pushed the UDF datacubes to another level
of quality and sensitivity.

We now derive the line flux detection limit for a point-like
source, using weighted FSF extraction and summation over three
spectral channels (i.e., 3.75 Å). This value is of course dependent
on the integration time (see the exposure map in Fig. 2). We give
the 3σ limiting line flux in Fig. 20 for the corresponding me-
dian integration times of the mosaic and udf-10 datacubes. The
corresponding detection limits are 1.5 × 10−19 erg s−1 cm−2 and
3.1 × 10−19 erg s−1 cm−2 in the region around 7000 Å between
OH sky lines, for the udf-10 and mosaic datacubes, respectively.

7. Source detection and extraction

Exploration of the mosaic and udf-10 datacubes starts by finding
sources, extracting their spatial and spectral information (e.g.,
subimages and spectra) and measuring their redshifts. The last
step is discussed in Paper II (Inami et al. 2017). Here we discuss
the first steps using two techniques: optimal source extraction
with an HST prior, and blind detection of emission line objects.

7.1. HST-prior extraction

As an input to our HST-prior extraction, we use the locations
of objects in the Rafelski et al. (2015) source catalog. This cat-
alog provides precise astrometry, photometry and photometric
redshifts for 9927 sources covering the entire UDF region.

Given the MUSE spatial resolution, 0′′.7 versus 0′′.1 for
HST, our data are unfortunately impacted by source confu-
sion. Thus, from the inital catalog, we compile a new cat-
alog of 6288 sources, created by merging all Rafelski et al.
(2015) sources which have a separation less than 0′′.6. For these
merged systems, we compute a new source location based on
the F775W-light-weighted centroid of all objects that make up
the new merged source.

8 This factor is probably a lower limit given that the noise analysis
performed on the HDFS datacube did not fully take into account the
correlated noise.

We then proceed to source extraction. Using the
Rafelski et al. (2015) segmentation map, we extract each
source from the MUSE data in a region defined by its original
segmentation area convolved with a Gaussian of 0′′.6 FWHM to
take into account the MUSE resolution. We generate a series of
1D spectra from each extraction region, using several different
weighting schemes: (a) a uniformly weighted, direct summation
over the full segmentation area, (b) an optimally weighted sum
using the reconstructed MUSE white-light image as the weight,
and (c) an optimally weighted sum using the estimated FSF at
the source location9. We also compute a second set of three
spectra, using the same weighting schemes, after subtracting a
background spectrum from the data. This spectrum is computed
as the average over the empty region free of sources surrounding
the object, using the convolved segmentation image as a guide.

The optimal extraction is based on the Horne (1986)
algorithm;

f (λ) =

∑
x MxWx,λ(Dx,λ − S λ)/Vx,λ∑

x MxW2
x,λ/Vx,λ

(9)

v f (λ) =

∑
x MxWx,λ∑

x MxW2
x,λ/Vx,λ

(10)

where f (λ) is the optimal flux and v f (λ) its variance, D, S and
V the data, sky and variance datacubes, M the segmentation
mask and W the weight which is either the white-light image
or the FSF. Depending on the object, one of these weighting
schemes provides a higher S/N than the others. In general we
use the background-subtracted white-light weighted spectra for
bright and extended objects (AB < 26 and FWHM > 0.5 × FSF)
and background-subtracted FSF weighted spectra for other small
and/or faint objects. An example of source extraction is shown
in Fig. 21.

Due to the convolution, the segmentation map of one source
can overlap with other neighboring sources, creating some
blending effects in the extracted spectrum. In a number of cases,
as shown in Paper II (Inami et al. 2017), the source can be de-
blended using the reconstructed narrow-band location when an
emission line is present. One such case can be seen in Fig. 21.
In that figure, the three central HST sources cannot be resolved
in the MUSE white light image and thus were originally merged
into one source in the extraction process. However, the recon-
structed narrow band image shows that the z = 4.1 Lyα emis-
sion10 can be clearly attributed to a unique HST object. Note
that this galaxy forms a pair with another Lyα emitter (ID 412)
at the same redshift located 3′′.5 SE with respect to the source
center.

The extraction process is run independently for the mosaic
and udf-10 datacubes, using the same input catalog in each case
to ensure that objects which are in both datacubes receive the
same ID.

7.2. Blind detection with ORIGIN

The HDFS study (Bacon et al. 2015) has demonstrated MUSE’s
ability to detect emission line galaxies without an HST coun-
terpart, so we should not have to rely only on HST-prior source
detection when searching for high equivalent-width star-forming
galaxies in the UDF. Note however, that the HST data set cover-
ing the UDF reaches a 5σ depth of 29.5 in the F775W filter, i.e.,

9 In the case of overlapping fields, the FSF is computed as the average
of all fields at the source location, weighted by the exposure map.
10 The Lyα line was identified from its asymmetric profile and fainter
continuum on the bluer side of the line.
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Fig. 21. Source ID 6698 from the udf-10 datacubes. On top, from left
to right, one can see the MUSE reconstructed white light image, the
HST image in F775W and the HST Rafelski segmentation map. Image
size is 5′′ and the source center is indicated by a red crosshair. The
blue circles mark the sources identified in the Rafelski catalog. The
central Rafelski source ID is 4451 and its F775W AB magnitude is
27.92 ± 0.04. The source and background masks are overlaid on the
MUSE white light image in magenta and green colors, respectively.
Bottom left: PSF weighted extracted source spectrum over the whole
wavelength range (box-filtered with a window of 5 pixels). The noise
standard deviation is shown in magenta (mirrored with respect to the
source spectra). Bottom right: Lyα Narrow-Band image.

one magnitude deeper than the HST HDFS observations. There-
fore, we expect to find fewer sources without HST counterparts
in the UDF, though this number is surely greater than zero. Be-
cause of this, it is beneficial to attempt to locate these “hidden”
galaxies through the use of a blind detection algorithm.

Aside from looking for a specific class of galaxy, there is
also a practical motivation for performing a blind search of the
MUSE datacubes. As discussed in Paper II, redshift assessment
is a difficult task which (as of now) is not fully automated, in-
stead relying in large part on expert judgement. In that respect,
investigating all 9927 objects in the Rafelski et al. (2015) cata-
log is a tedious undertaking. However, the task can be alleviated
by a blind search, assuming it can efficiently pre-select emission
line objects.

Several tools have already been developed to perform
blind searches of faint emitters in MUSE datacubes, such
as: MUSELET, a SExtractor based method available in
MPDAF11 (Piqueras et al. 2017), LSDCAT, a matching fil-
ter method (Herenz & Wisotzki 2017), SELFI, a Bayesian
method (Meillier et al. 2016) and CubExtractor (Cantalupo,
in prep.), a three-dimensional automatic extraction software
based on connecting-labeling-component algorithm (used, e.g.,
in Borisova et al. 2016; and Fumagalli et al. 2016).

Each of these methods has its own pros and cons: some
achieved high sensitivity but at the expense of low purity, others
are optimized to provide reliable results, that is high purity, but
with lower sensitivity. Given the depth and the field of view of
the UDF observations, we expect to find thousands of emission
line galaxies which, considering the MUSE spatial resolution,
will include a significant fraction of blended sources. The total
size of the datacube (3.3 billion voxels for the mosaic) is not
negligible either. In order to handle these methodological and

11 See the MPDAF MUSELET documentation at http://mpdaf.
readthedocs.io/en/latest/muselet.html

computational challenges, we have begun to develop a new au-
tomated method, called ORIGIN.

The method is still in development and will be presented in
a future paper (Mary et al., in prep.), but it is already mature
enough to be efficiently used for the UDF blind search. In the
following sections we briefly explain how the method works and
show the results obtained for our observations.

7.2.1. Method

The basic idea of the algorithm is to follow a matched fil-
ter approach, where the filters are spatio-spectral (3D) signa-
tures formed by a set of spectral templates (or profiles) that
are spatially extended by the point spread function of the in-
strument (Paris et al. 2013). In practice, this approach alone is
neither robust nor reliable, because the corresponding test statis-
tic is highly sensitive to sources different from the ones of in-
terest and to residual artifacts (both referred to as unknown
nuisance signals). A standard approach in this situation is to
model and estimate the nuisance signals under both hypotheses
(H0: line absent;H1: line present), see for instance Kay (1998),
Scharf & Friedlander (1994). However, the resulting tests are
computationally intensive and seem hardly compatible with the
datacube size. ORIGIN consequently opts for a two-step strategy,
where the nuisance signals are suppressed first (using a standard
Principal Component Analysis, hereafter PCA) and the lines are
detected in the PCA residuals. The resulting test statistics are
used to assign a probability to each predetected line. For each
line that is flagged as significant, a narrow band (NB) test is per-
formed in order to check whether the line is also significant in
the raw data, that is, before any processing (weighting by the es-
timated variances, PCA) is performed. This step is required be-
cause variance underestimation (especially around sky lines, see
Sect. 3.1.5) may create artificial lines when weighting the data.
Each line that survives the NB test is estimated (deconvolved),
leading to an estimate of the line center (a triplet of two spa-
tial and one spectral coordinates). The lines are then merged into
sources, leading to a catalog of sources with estimated lines and
various other information.

Suppression of nuisance signals: To be consistent with a like-
lihood based approach, the whole datacube is first weighted
by the estimated standard deviation of the noise in each voxel
(Sect. 3.1.5). In order to account for spatially varying statis-
tics (regions with more or less bright and/or extended sources)
the cube is segmented spatially into several regions (16 for the
udf-10 and 121 for the mosaic). For a given region, each std-
weighted data pixel p (a vector whose length is the number of
spectral channels) is modeled as a continuum c plus a residual
r: p = c + r. The continuum is assumed to belong to a low di-
mensional subspace, which is obtained by a PCA of all pixels of
the considered region. The number of eigenvectors spanning this
subspace is computed adaptively for each region. If Vz denotes
the matrix of the retained (orthonormal) eigenvectors, the resid-
ual is estimated as r̂ = p− ĉ = p−VV>z p. This analysis produces
a cube of residuals and, as a side product, a cube of continuum
spectra.

Line search: For all angular and spectral positions (α, δ, λ)
in the residual datacube, the line search considers subcubes of
the size of the considered target signatures (typically 13 px ×
13 px × 20 spectral channels, representing 2′′.6 × 2′′.6 × 25 Å)
and makes, for each subcube s centered at location (αs, δs, λs), a
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test for the two hypotheses:H0: s = n (Noise only),
H1: s = αΣ−

1
2 d + n (Line centered at (xs, ys, λs) plus noise),

where n ∼ N(0, I) is the noise – assumed to be a zero-mean
Gaussian with an Identity covariance matrix, Σ denotes the noise
covariance matrix of the data before weighting (assumed to be
diagonal in absence of information on noise correlations), α > 0
is the unknown amplitude of the emission line and d is a spatio-
spectral profile weighted by the local values of the noise standard
deviation (the weights change for each tested voxel xs, ys, λs).
The profile d is unknown but assumed to belong to a dictionnary
of 12 spectral profiles (say, di, i = 1, . . . , 12) of various widths
(from 3 to 16 Å) convolved by the local (wavelength dependent)
FSF (a Moffat function). A Generalized Likelihood Ratio (GLR)
approach leads to a test statistic T (s) in the form of a weighted
correlation:

T (s) = max
i

s>Σ−1di

||Σ−
1
2 di||

,

for which the numerator and denominator can be efficiently com-
puted using fast convolutions.

P-values: For the correlations, the P-value associated to an ob-
served correlation t is: pT := Pr (T > t | H0). A P-value mea-
sures how unlikely a test statistic is under the null hypothesis.
The distribution of T under the null hypothesis is estimated from
the data in each region and P-values pT are computed for each
voxel position. All voxels with a P-value below a threshold (set
after some trial to 10−7 for the UDF datacubes, corresponding
to a detection limit of 5.2σ for a Gaussian PDF) are flagged as
significant.

In the current version, the algorithm also computes a proba-
bility that each spectral channel is not contaminated by residual
artifacts (such as spurious residuals from sky lines subtraction),
by comparing the number of significant P-values in each chan-
nel against what should be expected from a uniform distribution
of noise.

The final probabilities (in the form of P-values) evaluate the
probability that the line is significant at each voxel position con-
ditionally to the fact that the considered voxel does not belong
to a channel contaminated by artifacts. The P-values less than a
threshold (set to 10−7) survive this step.

Thresholding the P-values leads to clusters of significant
P-values, because the signature of a line generally leads to sev-
eral small P-values located in a group of voxels in the vicinity
of the line center. To determine a first estimate of the position of
the line center, the algorithm retains the smallest P-value in each
group.

Narrow band tests: For each detected line, this step defines a
subcube t in the raw data centered on the supposed line location
and a control subcube b further away in wavelength (3 times the
spectral length of the profiles that created the detection, say dk).
A GLR test is then conducted between two hypotheses: under
the null hypothesis, both subcubes contain an unknown constant
background plus noise, and under the alternative hypothesis t
also contains the line dk with an unknown amplitude. The test
keeps all lines for which the test statistic (t−b)>dk√

2||dk ||
is larger than a

threshold (set to 2 for the UDF).
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Fig. 22. Normalized histograms of the P-values of the ORIGIN sources
with (in gray, restricted to Lyα emitters) and without (in red) HST coun-
terpart. The blue line displays the threshold P-value (10−7).

Line estimation: The spectral profile and spatial position of
each detected line is estimated by spatial deconvolution. The fi-
nal spectral position of the line is the maximum of the estimated
line. Note that while Gaussian profiles are used for detecting the
line, this step allows for the recovery of any line profile, for in-
stance asymmetric or double lines.

Catalog output: The lines are merged into sources by moving
over the angular coordinates of the cube containing all detected
line centers within a cylinder of diameter equal to the FWHM of
the FSF (averaged over the spectral channels) and z axis aligned
with the spectral axis. For each object, the algorithm outputs are
an ID number, its angular position and the detected lines. The
spectral channel of the line, Gaussian profile that created the ini-
tial detection, correlation and spectral channel tests’ P-values,
NB test scores, NB images, deconvolved line profile, estimated
flux and FWHM are stored for each line.

7.2.2. Application to the UDF

The ORIGIN algorithm is implemented as a Python package and
was successfully run on the UDF fields using the parameters de-
fined in the previous section. The full computation takes ≈1 and
≈6 h of computing time on our 32 multi-core linux workstation
for udf-10 and mosaic datacubes, respectively. The program re-
ported the detection of 355 (udf-10) and 1923 (mosaic) candi-
date sources. After removing the 49 (udf-10) and 672 (mosaic)
false detections12 identified after visual inspection, we are left
with 306 and 1251 potentially real detections, corresponding to
86% and 65% purity, respectively, for the udf-10 and mosaic
fields.

As shown in Paper II (Inami et al. 2017), not all detec-
tions will eventually turn into a redshift. Generally, the detected
sources without redshift have a S/N that is too low to identify the
emission and/or absorption lines, but the vast majority at least
have an HST counterpart, validating their detection status.

A comparative analysis between the ORIGIN-detected and
the HST-prior extracted sources is presented in Paper II. This
comparison has been fruitful in finding the remaining problems
with ORIGIN which impact its sensitivity and/or its purity, which
will result in an improved version in the near future. However,
despite its current limitations, ORIGIN is able to detect a large
number of sources, especially high-redshift, faint Lyα emitters.

One such example is given in Fig. 23a. The source is de-
tected at high significance by ORIGIN (P < 10−9) in the mo-
saic datacube, as can be seen in the MAXMAP image. This

12 The false detections are mainly due to residuals left over by contin-
uum subtraction, splitting of extended bright sources in multiple sources
plus a few remaining datacube defects.
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Fig. 23. On top, from left to right: ORIGIN MAXMAP image, MUSE reconstructed white light image, HST images in the F775W and F850LP
filters, and Lyα narrow-band image. Image size is 5′′ and the source center is indicated by a red crosshair. The blue circles mark the sources
identified in the Rafelski catalog. Bottom: source spectrum over the whole wavelength range (box-filtered with a window of 5 pixels) and zoomed
(unfiltered) around the Lyα line. The noise standard deviation is shown in magenta (mirrored with respect to the source spectra).

image is a flattened image of the correlation datacube, displaying
the maximum of the correlation over wavelengths. The typical
asymmetric Lyα line profile is very clear, leading to a redshift
of 6.24 for this object. Although the source was not identified in
the Rafelski et al. (2015) catalog, a faint counterpart is present
in the HST F850LP broadband image. The corresponding mea-
sured magnitude is AB 29.48 ± 0.18 (see Sect. 7.3).

The second object (Fig. 23b) is in the udf-10 field. It is also
unambiguously detected by ORIGIN (P < 10−9). The line shape,
although less asymmetric than for the previous case, the absence
of other emission lines and the undetected continuum, qualifies
the galaxy as a Lyα emitter at z = 5.91, but this time one cannot
see any HST counterpart. The derived lower limit magnitude is
AB 30.7 in the corresponding F850LP broadband filter. In total
ORIGIN detected 160 sources which were missed in the Rafelski

catalog, including 72 which have no HST counterpart (see next
section).

We investigate how reliable is the detection of these 72 new
sources by comparing their P-values with the corresponding
values of the ORIGIN detections (restricted to Lyα emitters)
and successfully matched with an HST source. The histograms
of the P-values for the two populations are given in Fig. 22.
As expected, the sources with low P-values (<10−29, <10−18

in udf-10 and mosaic respectively) are all detected in HST.
However, except for these bright emitters, the P-values of the
HST-undetected sources are not very different from the gen-
eral population. This is especially true for udf-10 which goes
deeper than mosaic. At similar P-values, the sources detected
by ORIGIN with HST counterpart were unambiguously identi-
fied (see Paper II for the detailed evaluation) giving confidence
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Fig. 24. Location of the new sources detected by ORIGIN overlaid on
the mosaic white-light image. HST-detected objects, i.e., brighter than
the detection depth in at least one HST filter, are shown in blue, while
the HST-undetected ones are displayed in red. The udf-10 and mosaic
sources are marked with a circle and a square symbol, respectively. The
green rectangle indicates the XDF/HUDF09/HUDF12 region contain-
ing the deepest near-IR observations from the HST WFC3/IR camera.
The red square show the udf-10 field location. The north is located 42◦
clockwise from the vertical axis.

that most of the HST-undetected sources found by ORIGIN are
real.

7.3. HST photometry of newly detected sources

We performed a simple aperture photometric analysis by com-
puting HST AB magnitudes in a 0′′.4 diameter centered at the
source location for all HST broadband images13. The magni-
tudes were compared to the 5σ detection limit of the correspond-
ing HST filter (see column AB5σ in Table 2). A source is defined
as HST-detected when it is brighter than the 5σ detection limit
in at least one of the HST filters. Note that for the sources which
fall outside the region with the deepest WFC3 IR data the corre-
sponding shallower limiting depth was used.

The location of all sources without Rafelski et al. (2015) cat-
alog entries are shown in Fig. 24. Among these 160 sources,
72 where considered as HST-undetected, i.e., with all computed
magnitude larger than the detection limit. While the majority of
these objects (54) are located within the region with the deep-
est WFC3 IR data, a small fraction (18) are found outside this
region. Although all of these objects without HST counterpart
fall below the detection limit of Rafelski, we derive a rough es-
timate of their average magnitude by computing the mean AB
magnitude and its standard deviation for the entire sample of
54 sources present in the area of the HST deepest IR images
(Table 2). A detailed analysis of the properties of these sources
is deferred to another paper (Maseda et al., in prep.).

13 Note that these fixed aperture magnitudes can be different from those
given in Paper II which are based on the NoiseChisel segmentation
maps.

Table 2. Mean HST AB magnitude (AB) of the 54 sources without HST
counterpart in the deepest UDF region (displayed as a green rectangle
in Fig. 24).

Filter AB AB5σ
F606W 31.8 ± 1.1 29.6
F775W 31.3 ± 1.3 29.5
F850LP 31.0 ± 1.4 28.9
F105W 31.3 ± 0.9 30.1
F125W 31.1 ± 0.6 29.7

Notes. The reference AB 5σ depth (AB5σ) from Table 1 of
Rafelski et al. (2015) is shown.

We inspect the 88 HST-detected objects discussed above to
understand why they were missing in that catalog. We found
three main reasons: 1) distant deblending, where the object is
clearly detected but parametric fitting had associated it with a
distant neighbor, see Fig. 17 in Akhlaghi & Ichikawa (2015);
2) nearby deblending, where the object was too close to a
bright object to be identified as a separate object; and 3) manual
removal based on S/N after running SExtractor, to correct for
low purity. These three classes constituted 8%, 73%, and 15% of
the missed objects.

To perform optimal source extraction as presented in
Sect. 7.1, we update the Rafelski segmentation map with the seg-
ments corresponding to the new detected object. Rafelski et al.
(2015) had already used multiple SExtractor (Bertin & Arnouts
1996) runs to generate their segmentation map. Hence for im-
age segmentation and broadband measurements of these ob-
jects, we adopted NoiseChisel (Akhlaghi & Ichikawa 2015).
NoiseChisel is non-parametric and much less sensitive to the
diffuse flux of the neighboring objects. Therefore it is ideally
suited to complement the Rafelski et al. (2015) catalog.

NoiseChisel was configured to “grow” the detected
“clumps” into the diffuse regions surrounding them when there
are no other clumps (resolved structure) over the detection area
(see Fig. 10 of Akhlaghi & Ichikawa 2015). The final segmen-
tation map for each object was selected as the one which gives
the largest detection area among all filters. Checking the corre-
spondence between magnitudes derived with this configuration
and with Rafelski et al. (2015), we found the expected agree-
ment in derived magnitudes: that is, in the AB magnitude inter-
val 27.5±0.25, the 2σ iterative clipped rms (terminated when the
relative change in rms goes below 0.1) was 0.13 in the F775W
filter. As a comparison, the R15 catalog has rms of 0.14 with the
same magnitude interval, filter and method.

NoiseChisel detected the previously mentioned objects,
along with another 39% of the initial sample. For the remain-
ing objects, an aperture of diameter 0′′.5 was placed on the posi-
tion reported by ORIGIN. Each object’s footprint was randomly
placed in 200 non-detected regions and the 1σ width of the final
distribution was defined as an upper limit on the magnitude. In
the case of the WFC3/IR images that contain the wide HUDF
and deep XDF/IR depths, this was done on the depth the object
was positioned in, not the full UDF area. When the object’s mag-
nitude was below the upper limit magnitude in a filter, the latter
was used in the catalog. An example of a NoiseChisel detection
performed on one of the sources without a Rafelski et al. (2015)
catalog entry (ID 6524 Fig. 23a) is presented in Fig. 25.
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R15 SegMap HST F850LP NC Clumps New SegMap

Fig. 25. Complementing the Rafelski et al. (2015) segmentation map with NoiseChisel on source ID 6524 (see also Fig. 23a). Note that images
are displayed in the original HST grid (rotated by −42◦ compared to Fig. 23a). Image size is 8′′ and the target is in the center (shown by the
red crosshair). From left to right: the Rafelski et al. (2015) segmentation map, the input F850LP image, NoiseChisel clumps (red) over diffuse
detections (light blue), and the final segmentation map, with the central clump of the previous image added to the input segmentation map. Note
how some red regions in the NoiseChisel clumps image are not surrounded by diffuse flux (light blue). The measured magnitude is 29.49± 0.18
in the F850LP filter. See Sect. 7.3 for more details.

8. Summary and conclusion

In this first paper of the series, we have presented the MUSE
observational campaign of the Hubble Ultra Deep Field for a
total of 137 h of VLT time, performed in 2014 and 2015 over
eight runs of our GTO. A contiguous area of 9.92 arcmin2 was
observed with a mosaic of nine fields. It covers almost the entire
UDF region at a median depth of 9.6 h. A single field (udf-10) of
1.15 arcmin2 located within the XDF region, was also observed
at additional depth. When combined with the mosaic fields, it
reaches a median depth of 30.8 h.

The reduction of this large data set was performed using an
advanced scheme to better remove the systematics and improve
the overall quality of the produced datacubes. An enhanced self-
calibration process, a better masking of instrument artefacts and
the use of the PCA ZAP (Soto et al. 2016) software to remove
sky residuals, results in datacubes with improved quality with
respect to the previous HDFS MUSE observations and data re-
duction (Bacon et al. 2015).

We investigated the astrometry and broadband photometric
properties of the datacubes, using the HST deep images as ref-
erence. We found an astrometric accuracy of 0′′.07 rms, i.e., 1

10
of the spatial resolution, for galaxies brighter than AB 27. We
also assessed the broadband photometric performance, still us-
ing HST magnitude as reference. Although the achieved photo-
metric accuracy of MUSE datacubes cannot compete with the
performance of the UDF HST deep broadband imaging, espe-
cially in the redder part of the spectrum dominated by OH lines,
we found good agreement with little systematic offset up to mag-
nitude AB 28. The scatter of MUSE magnitudes with respect
to HST is 0.4 mag in F606W for the udf-10 datacubes at AB
26.5, and 0.8 mag for the F775W and F814W filters at the same
magnitude.

We developed an original method to accurately measure the
spatial resolution of the observations through a comparison with
the HST broadband images. This method can be used when there
is no bright star in the MUSE field. It works in Fourier space and
also provides a good estimate of the absolute astrometric and
photometric offsets with respect to HST. Using this new tool,
we derived the spatial PSF of the combined datacubes, modeled
as a Moffat function with a constant β = 2.8 parameter and a
linear decrease of FWHM with wavelength. The achieved spatial
resolution (Fig. 14) is 0′′.71 (at 4750 Å) and 0′′.57 (at 9350 Å)

FWHM for both the mosaic and udf-10 fields. There is little
dispersion for the mosaic sub-fields, with a measured standard
deviation of only 0′′.02.

We investigated the noise properties of the two final dat-
acubes. The noise distribution is well represented by a Normal
probability density function. The empirical correction account-
ing for the correlated noise in each individual datacube prior
to the combination works well. The final corrected propagated
standard deviation is a good representation of the true noise
distribution in regions with faint sources (e.g., dominated by
the sky noise). A 1σ surface brightness emission line sensitiv-
ity (Fig. 19) of 2.8 and 5.5 × 10−20 erg s−1 cm−2 Å−1 arcsec−2 is
reached in the red for an aperture of 1′′ × 1′′ and for the udf-10
and mosaic datacubes, respectively. This is a factor 1.6 better
than the sensitivity measured in the first release of the HDFS
datacube, demonstrating the progress achieved in the data reduc-
tion and observational strategy. A 3σ point source line detection
limit (Fig. 20) of 1.5 and 3.1 × 10−19 erg s−1 cm−2 is achieved in
the red (6500−8500 Å) and between OH sky lines for the udf-10
and mosaic datacubes, respectively.

We extracted 6288 and 854 sources from the mosaic and
udf-10 datacubes, using the Rafelski et al. (2015) catalog and
segmentation map as input for the source locations. For each
source we performed optimal extraction, weighted with either
the white light image or the FSF at the source location. A large
number (40%) of HST sources are blended at the MUSE spatial
resolution, but we show that this blending can often be resolved
using reconstructed narrow-band images to locate sources that
have detected emission lines.

In parallel we performed a blind search for emission line
objects using an algorithm (ORIGIN) developed specically for
MUSE datacubes. ORIGIN computes test statistics on a matched
filtered datacube after a PCA-based continuum removal. The
blind search results in 306 and 1251 detections in the udf-10
and mosaic datacubes, respectively.

A number of these sources (160) were not present in the
Rafelski et al. (2015) catalog. Investigation of these new sources
show that 55% of them are bright enough in at least one of
the HST band to be detected, but have been missed because of
contamination and/or uncorrect SExtractor deblending process.
The remaining 72 sources fall below the detection limit of HST
broadband deep images. In the HST region with deep WFC3/IR
images, we compute a mean AB magnitude of 31.0−31.8 within
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Fig. 26. Example of sources from the mosaic and udf-10 fields. Each row shows a different object, ordered by redshift. From left to right one
can see: the HST broadband image (F775W filter), a MUSE-reconstructed narrow-band image of one of the brightest emission lines, the source
spectrum over the full wavelength range and a zoom-in region highlighting some characteristic emission lines. The images have a linear size of 5′′
and the source center is displayed as a red cross-hair.
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a 0′′.4 diameter aperture. We use NoiseChisel, a SExtractor al-
ternative optimized for the detection of diffuse sources, to derive
an updated segmentation map for these sources when that was
possible.

The redshift measurement and analysis of this unprece-
dented data set is presented in Paper II (Inami et al. 2017). With
more than 1300 high-quality redshifts, this survey is the deep-
est and most comprehensive spectroscopic study of the UDF
ever performed. It expands the present spectroscopy data set
(173 galaxies accumulated over ten years) by almost an order
of magnitude and covers a wide range of galaxies, from nearby
objects to z = 6.6 high redshift Lyα emitters, and from bright
(magnitude 21) galaxies to the faintest objects (magnitude >30)
visible in the HST images.

Of course, the survey “performance” is much more than just
the number of faint sources from which we are able to obtain
reliable redshifts. The quality of the MUSE data, as shown in
Fig. 26 for a few representative sources, enables new and de-
tailed studies of the physical properties of the galaxy population
and their environments over a large redshift range. In subsequent
papers of this series, we will therefore explore the science con-
tent of this unique data set.
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