

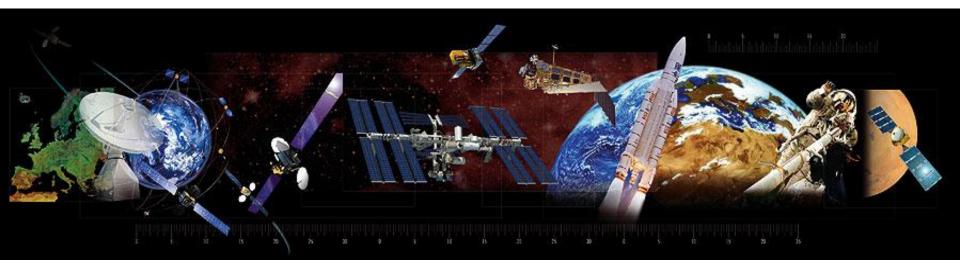
EPO IN A MULTINATIONAL CONTEXT

Heidelberg, June 2013

www.esa.int

ESA FACTS AND FIGURES

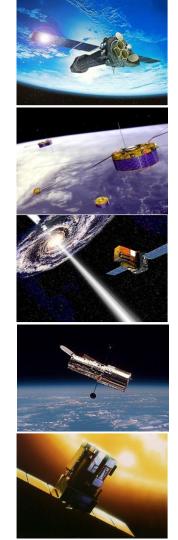
- Over 40 years of experience
- 20 Member States
- Six establishments in Europe, about 2200 staff
- 4 billion Euro budget (2013)
- Over 70 satellites designed, tested and operated in flight
- 17 scientific satellites in operation
- Six types of launcher developed
- Celebrated the 200th launch of Ariane in February 2011


ACTIVITIES

ESA is one of the few space agencies in the world to combine responsibility in nearly all areas of space activity.

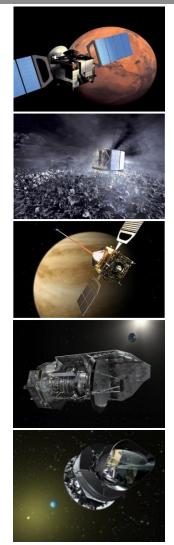
- Space science
- Human spaceflight
- Exploration
- Earth observation
- Launchers

- Navigation
- Telecommunications
- Technology
- Operations

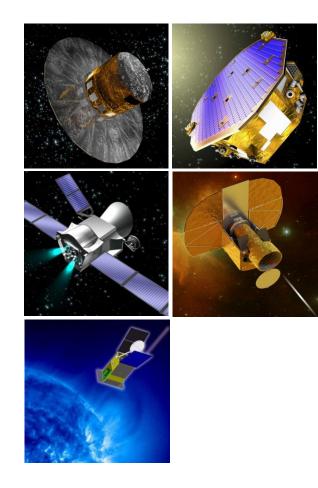


SCIENCE & ROBOTIC EXPLORATION

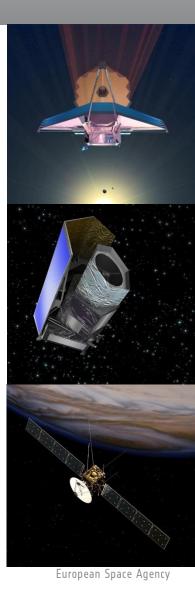
TODAY'S SCIENCE MISSIONS (1)


- XMM-Newton (1999–) X-ray telescope
- **Cluster** (2000–) four spacecraft studying the solar wind
- Integral (2002–) observing objects in gamma and X-rays
- Hubble (1990–) orbiting observatory for ultraviolet, visible and infrared astronomy (with NASA)
- **SOHO** (1995–) studying our Sun and its environment (with NASA)

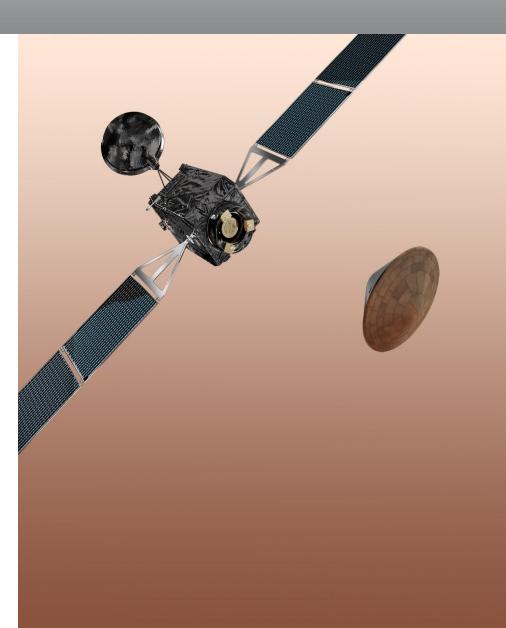
TODAY'S SCIENCE MISSIONS (2)


- Mars Express (2003–) studying Mars, its moons and atmosphere from orbit
- Rosetta (2004–) the first long-term mission to study and land on a comet
- **Venus Express** (2005–) studying Venus and its atmosphere from orbit
- Herschel (2009–) far-infrared and submillimetre wavelength observatory
- Planck (2009–) studying relic radiation from the Big Bang

UPCOMING MISSIONS (1)


- **Gaia** (2013) mapping a thousand million stars in our galaxy
- LISA Pathfinder (2015) testing technologies for gravity wave detection
- **BepiColombo** (2014) a satellite duo exploring Mercury (with JAXA)
- **Cheops** (2017) studying exoplanets around nearby bright stars
- **Solar Orbiter** (2017) studying the Sun from close range

UPCOMING MISSIONS (2)


- James Webb Space Telescope (2018) studying the very distant Universe (with NASA/CSA)
- Euclid (2020) probing 'dark matter', 'dark energy' and the expanding Universe
- **JUICE** (2022) studying the oceanbearing moons around Jupiter

ROBOTIC EXPLORATION

In cooperation with Roscosmos, two **ExoMars** missions (2016 and 2018) will investigate the martian environment, particularly astro-biological issues, and develop and demonstrate new technologies for planetary exploration with the long-term view of a future Mars sample return mission.

ESA CONTEXT

Multinational

Multilingual and multicultural (20 member states)

• International

Space Agencies

Multi-programme context ESA wide Directorate wide

EPO STRATEGY AT ESA

Target Groups

- 1. General Public
- 2. European scientific community
- 3. Media and opinion formers
- 4. Decision makers
- 5. Space industry
- 6. Stakeholders (Delegations)
- 7. Students (primary, secondary schools and University)

EPO STRATEGY AT ESA

Target Groups

- 1. General Public
- 2. European scientific community
- 3. Media and opinion formers
- 4. Decision makers
- 5. Space industry
- 6. Stakeholders (Delegations)
- Students (primary, secondary schools and University)

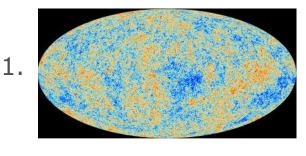
Communication Mix

- 1. Media Relations
- 2. Online
- 3. Events
- 4. Exhibition
- 5. Social Media
- 6. Partnerships

PLANCK

INPUT

- 1. CMB image
- 2. 50 scientific papers
- 3. International Planck Science Team


PLANCK

INPUT

- 1. CMB image
- 2. 50 scientific papers
- 3. International Planck Science Team

OUTPUT

Furzozan Saace Aproci

13-Jun-2013

Cesa plain text press releases

Nº 7-2013: PLANCK REVEALS AN ALMOST PERFECT UNIVERSE

20 March 2013

- Acquired by the European Space Agency's Manck space telescope, the most detailed n ever orested of the contric microwave tackground – the refer radiation from the Gp Ba – was released today revealing the existence of features that challenge the fauldator aur current understanding of the timivense. The invest is based on the invited 15.5 months of rates from these and is the microin/file
- first all-sky picture of the oldest light in our Universe, imprinted on the sky when it was just 360 000 years old. At that time, the young Universe was filled with a hot darse sous of intervention monoton
- electrons and photons at about 270DPC. When the protons and electrons joined is for hydrogen atoms, the light was set free. As the Universe has expanded, the light today has been structured auto an inconverse wavelengths, equivalent to a temparature of just degrees above about actions are not approximately and the interpretation of the historecommension background (CMP) and the interpretation of

correspond to regions of alightly different densities at very early times, representing the seeds of all future structure: the stars and galaxies of today.

coronny to the standard model of cosmology, the fluctuations arose immediately after le Big Bang and were stretched to cosmologically large scales during a brief period of coelerated expansion known as inflation.

menux www.sewighed to map traise huccustoms across the whole sky with greater resolution and sensitivity than ever before. By analysing the nature and distribution of the dead in Planck's GHB image, we can determine the composition and evolution of the Universe from its birth to the present day.

Overall, the information extracted from Planck's new map provides an excellent confirmation of the standard model of cosmology at an unprecedenced accuracy, setti new benchmark in our menifest of the contents of the Universe.

Multinational Coordination

- 1. Input of international Planck Science Team's
- 2. Non Embargo policy
- 3. Space Agencies and National Science Institutes involved in Planck
- 4. Priority within ESA
- 5. Space industry
- 6. Stakeholders

Principles

- 1. Cooperation
- 2. Competition
- 3. Based on Missions
- 4. Priority to content
- 5. Uniqueness

Principles

- 1. Cooperation
- 2. Competition
- 3. Based on Missions
- 4. Priority to content
- 5. Uniqueness

Challenges

- 1. Sustainability
- 2. Brand communication
- 3. Grand themes

THANK YOU

markus.bauer@esa.int

