TWO SMALL PIECES OF GLASS

The Amazing Telescope

Visual List/Script

Blue = Computer Graphics

Black = HD footage/video

Red = Time Lapse photography

Purple = Planetarium Graphics

Intro and	d title sequence	
1.	Circle showing a view through a simple refractor as if the audience were looking through it. As it pans around it shows a view of the Moon, Jupiter with its moons, and the Milky Way. Fly through the telescope seeing two pieces of glass coming together in front of a fuzzy title, as they line up the title comes into focus. Fades to current star field.	Dramatic Musicstarts slow and builds
2.		
	Two spot lights representing bicycle lights move across a park entrance sign. A paper sign reads "Star Party Tonight"	
	Lights fall off the sign.	
		[The clatter of two bikes dropping
		to the ground is followed by the
		sound of feet walking on gravel.]
3.	silhouette of a teenage girl appears facing forward against a darken dome	Youth 1 (The voice of the audience)
		Hey, wait up! I can't see.
4.	The silhouette turns around to meet a second silhouette of a teenage boy	Youth 2 OK. We'll wait for your eyes to get use to the dark.
5.		Youth 1
Ј.		
		Why does it seem so dark here?
6.		Youth 2

I

Audio

Scene I Visual

Scene	I Visual I	Audio
	Youth 1 stumbles, bumps into tree, startling a owl; The yellow eyes of an owl appear. Glaring a the kids, he slowly blinks and flies off the tree	Because we rode in from the bright lights of the city into the
7.	Stars appear on the dome – set for equator. Brighten as eyes adjust.	so they can see at night?
8.	Human eye with pupil, changing as it adapts darkness. Shown in south at 45 degrees ab horizon	
	Refractor with light path on east side of dom Reflector with light path on west side of dom	e look through tonight work the same way. The bigger the mirror or lens, the more light the telescope captures. Last year they had a telescope that was big enough that. I got to see galaxies through it. It was really cool!
9.		Youth 1
	Youths move down the path and silhouettes	of Let's go.

Scene	I Visual I	Audio
	a group of people appear. 6 to 8 telescopes silhouettes at o around dome with people at eac	[The sounds of footsteps on
10.	Silhouettes of a mature female e the two youths	emerges to join Astronomer (Voice of authority) Hello there! Glad you could come. I've been looking for you.
11.		Youth 2 Did you bring your big telescope this year?
12.		Astronomer Of course, it's over here.
13.	The scene moves to a silhouette Dobsonian telescope and ladder	
14.		Youth 1 No way. That thing is huge! And it sure doesn't look like the telescope in our science classroom at school. The

Scene	I Visual I	Audio
		eyepiece is at the back. Where
		is yours?
15.		Youth 2
		It's at the top, that's why we need the ladder to look though it.
16.		Astronomer
		That's right. This is a reflecting
		telescope, which means the light
		is gathered on a mirror at the
	Reflector optical system – fly through showing	back of the telescope and
	the inside of telescope and light paths	reflected to the front of the
		telescope, where it hits another
		mirror and the light is reflected
		again, into the eyepiece.
		The telescope your teacher has
		is called a refractor; that uses
		lenses instead of mirrors to
		gather and focus the light.
17.		Youth 1
		Which is better, the reflector or the refractor?
18.		Astronomer
		It depends on what you want to
		observe with your telescope. But
		the general rule is, the bigger the
		mirror or lens, the more light the
		telescope will gather, and the
		brighter and more resolved the
		biginer and more resolved life

Scene	I Visual I	Audio
		object you are looking at will be.
10		Nouth A
19.		Youth 1
		Resolved?
20.		Youth 2
		To resolve an object means that
		you can see detail. When you
		look through the telescope from
		our school you can see Jupiter
		and its four moons. But when
		you look through this telescope,
		you can see the bands of clouds
		on Jupiter, too! So the better the
		resolving power – or resolution -
		the better the view. Right?
21.		Astronomer
		Right! You have a great memory.
22.		Youth 2
	Image of Saturn as viewed through a moderate	How could I forget? I will always
	size instrument	remember seeing Saturn's rings
		for the first time and the spiral
		arms of that galaxy you showed
		me last year.
23.		Youth 1
		Can I look through your telescope?
24.		Astronomer
		Sure, the whole reason I brought it here.

Scene	I Visual I	Audio
25.		Youth 1
		<u>- (?)</u>
26.	One student viewed on ladder at the eyepiece. Jupiter appears in view showing Galilean Moons	[Sounds of climbing a ladder]
27.		Youth 1
		Wow! Is that really Jupiter? What are those stars lined up on either side?
28.		Astronomer
		Those are the four Galilean moons – Io, Callisto, Europa and Ganymede.
29.		Youth 1
		Why are they called Galilean moons?
30.		Astronomer
		An Italian mathematician named
	Footage of Galileo appears off to side of dome Background is CGI to match setting	Galileo in 1609 was the first man
		to see them with a telescope. In
		fact, it's believed that Galileo was
		the first to use a telescope to
		view the heavens. He was surely
		the first to record his
		observations.
31.		Youth 1
		Galileo invented the telescope?
32.		Youth 2
		Nope. Can you tell the story of
		that Dutch guy?

Scene	I Visual I	Audio
33.		Astronomer
	Stonehenge All Sky Image (fisheye)	Sure, but let me tell your
	Eclipse footage	brother(?) what it was like
		before there were telescopes.
		Big events, like lunar eclipses
	Live sky motion (rendered out for full dome	and meteor showers, can be
	facilities)	enjoyed without the use of a
		telescope. All you need to do
		is look up and view them with
		your own eyes.
		Everyone used to believe that
		the Earth was the center of the
		Universe and that the Moon,
		planets, and even the Sun
		orbits around it.
	Ptolemaic model of the solar system.	Then a man named Nicholas
		Copernicus proposed a
		different model with the Sun,
		not the Earth, at the center;
	Copernicus footage off to one side of dome	most people did not take the
	Heliocentric model of solar system above	idea seriously. They felt that
		Copernicus' model was far
		fetched.
34.		Youth 1
35.		Astronomer
.		

Scene	I Visual I	Audio	
36.			
37.		Astronomer	
		But in 1609, a Dutchman named	
		Lipperhey took two small pieces	
		of glass and fixed them in a tube	
	Fastara of Linearbox, COLin background to	creating a spyglass. Now, this	
	Footage of Lipperhey – CGI in background to match.	was probably not the first time	
		that this had been done_but the	
		idea for the telescope was	
		published in the newspapers and	
		Galileo read about it.	
38.		Youth 2	
		and Galileo did something that	
		no one had done before, he	
		looked at the night sky with his	
		telescope.	
39.		Astronomer	
		On a clear evening in January	
		<u>1609</u> , he pointed it toward	
	Clip of Galileo from documentary shown in	Jupiter. Let me show you a clip	
	laptop	of him on my laptop.	
		The telescope's narrow field of	
	CGI/Images illustrating FOV of the telescope.		
		view made it difficult for him to	
		find Jupiter, but when he did,	
L			

Scene	I Visual I	Audio
	Jupiter – fuzzy, with moons	he saw three stars next to
		Jupiter - one to the right of
		Jupiter and two more on the
		planet's left. He watched these
	Galileo's Journals showing Jupiter and Galilean	points of light over several
	Moons	nights, noting how they
		changed their position. He
		determined that they were
		moons orbiting Jupiter - not the
		Earth. This became the first
	Copernican Orrey	observational evidence that the
		heavens worked differently
		than what people had imagined
		up to then. Copernicus' theory,
		that we orbited the sun, was
		eventually proven using
		Galileo's new window on the
		universe – the telescope.
40.		
41.		Astronomer
		And His telescope was even
		smaller than the one in <u>your</u>
		school!
42.		Astronomer

Scene	I Visual I	Audio
	Footage of Galileo's Telescope Images of the Moon, Venus, the Sun and Milky Way.	The lens was very small and not very clear. It's only due to Galileo's patience and careful observing that he saw what he did. Galileo's telescope had a small lens so the resolution was very poor. The telescope magnified enough for him to recognize that there are mountains on the Moon, spots on the sun, and that Venus goes through phases like our Moon, but he couldn't see much more than that. He did see that the Milky Way was made up of thousands of stars. Now, would you like to look at Saturn?
43.		Youth 1 Sure.
44.	Silhouette moves up the ladder and moves the telescope.	Astronomer Give me a minute. [Sound of the telescope moving, shuffling of feet] Here we go. Take a look.
45.		Youth 1

Scene	l Visual I	Audio	-
	Image of Saturn.	Wow, that's awesome! IS it real?	
46.		Youth 2	-
		lťs real <u>!</u>	
47.		Youth 1	-
		Did Galileo see Saturn in his telescope?	
48.		Astronomer	-
	Galileo's drawings of Saturn	Yes, but all he saw an oblong	
		point of light because his	
		telescope lacked the resolving	
	Footage of Huygens and friend viewing Saturn	power to see the rings. He	
		described it as a planet with	
		"ears" since his image was	
		distorted.	
		The Dutch astronomer Christiaan	
	Huygen's telescope	Huygens used a 23-foot long	
		refracting telescope, revealing	
		Saturn as a ringed planet and	
		discovering its largest moon	
		Titan.	
49.		Youth 1	_
50.		Astronomer	Formatted: Tab stops: 1.59
51.		Youth 1	rormatted: Tab stops: 1.59
52.		Youth 2	-

Scene	l Visual I	Audio
53.		Astronomer
54.		Youth 1
55.		Youth 2
56.		Astronomer
	Newton at his desk, and at the window w/prism	Shortly after Huygens made his
		long refractors, a man named Sir
		Isaac Newton did some
		experiments and figured out that
	optical aberration through a simple set of lenses	color aberration <u>, a common</u>
		problem with refracting
	Images of Refractor and Reflector light paths	telescopes that causes an image
	with Red and Blue light paths – shows	to have a colored ring around its
	aberration in refractor	edge, was produced when light
		passe <u>s</u> through the lenses. So
		he found a way to use a mirror to
		focus the light just like a lens, but
		without the color aberrations.
		Now do you want to see some
		real color?
57.		Youth 1
		Sure!
58.		Astronomer
	Silhouette of the telescope being moved.	OKI'll point the telescope over
		here to a pretty sight. Alberio A
		and B. A binary star system,
		which means these two stars

Scene	l Visual I	Audio
		appear extremely close; in fact,
		with your unaided eyes it
		appears as a single star in the
		sky.
59.	Image of Alberio A and B	Youth 1
		I see two stars but they're not the
		same color. One is blue and one
		is gold.
60.		Youth 2
	Footage of a candle's flame; pan from blue to	That's because each star is of a
	red	different temperature.
		I learned that last year. When
		you look at a candle flame you
		see it go from blue near the wick,
		to almost red at the top. Each
		color relates to the temperature
		of the flame at that point. The
		top of the flame – the red part is
		hot. But the blue part is really
		hot.
61.		Astronomer
	Newton at window w/prism and spectra on wall	Right again! Newton was
	– shown on laptop	involved with figuring that out as
		well. <u>He</u> passed light through a
	Visual spectrum with a thermometer showing	prism and discovered that colors
	temperature difference.	of the rainbow correspond with
		different temperatures. The blue
		portion of the rainbow, or
		spectrum, is warmer than the
		red.
L		

how to build a telescope using a mirror as a lens to remove color aberrations, he also started the study of light called spectroscopy. These unique discoveries are utilized on telescopes all over the world every night, even on the 10- meter mirror telescopes in La Palma and Hawaii. 62. Youth 1 10 meters? 10 meters? 63. Youth 2 Footage of a detector being changed out, astronomers at computer screens – pan to onscreen image. Astronomer Astronomer don't "look" through telescopes that big. They use devices called "detectors". Detectors take the focused light and either "image" it into a digital photograph or break the light up into a spectrum. Now, a photograph can tell you a lot about an object, but a	Scene	I Visual I	Audio
62. Youth 1 63. Youth 1 64. Spectros opt a detector being changed out, astronomers at computer screens – pan to onscreen image. Astronomer 64. Astronomer don't "look" through telescopes that big. They use devices called "detectors". Detectors take the focused light and either "image" it into a digital photograph or break the light up into a spectrum. Photo of stars compared to spectrum of stars Now, a photograph can tell you a lot about an object, but a			So not only did Newton figure out
aberrations, he also started the study of light called spectroscopy. These unique discoveries are utilized on telescopes all over the world every night, even on the 10-meter mirror telescopes in La Palma and Hawaii. 62. Youth 1 10 meters? 10 meters? 63. Youth 2 Footage of a detector being changed out, astronomers at computer screens – pan to onscreen image. Astronomer Astronomer Astronomer devices called "detectors". Detectors take the focused light and either "image" it into a digital photograph or break the light up into a spectrum. Now, a photograph can tell you a lot about an object, but a			how to build a telescope using a
Study of light called spectroscopy. These unique discoveries are utilized on telescopes all over the world every night, even on the 10- meter mirror telescopes in La Palma and Hawaii.62.Youth 1 10 meters?63.Youth 2 That's like over 30-feet. What's it like looking through one of them?64.Astronomer Astronomers at computer screens – pan to onscreen image.Footage of a detector being changed out, astronomers at computer screens – pan to onscreen image.Astronomer Astronomer Astronomer and either "image" it into a digital photograph or break the light up into a spectrum.Photo of stars compared to spectrum of starsNow, a photograph can tell you a lot about an object, but a			mirror as a lens <u>to</u> remov <u>e</u> color
62. Youth 1 10 meters? 10 meters? 63. Youth 2 64. Astronomer Footage of a detector being changed out, astronomers at computer screens – pan to onscreen image. Astronomer Astronomer Astronomer devices called "detectors". Detectors take the focused light and either "image" it into a digital photograph or break the light up into a spectrum. Now, a photograph can tell you a lot about an object, but a	1		aberrations, he also started the
discoveries are utilized on telescopes all over the world every night, even on the 10- meter mirror telescopes in La Palma and Hawaii. 62. Youth 1 10 meters? 63. Youth 2 That's like over 30-feet. What's it like looking through one of them? 64. Footage of a detector being changed out, astronomers at computer screens – pan to onscreen image. Photo of stars compared to spectrum of stars Photo of stars compared to spectrum of stars			study of light called
Images of Keck and La Palma telescopes all over the world every night, even on the 10-meter mirror telescopes in La Palma and Hawaii. 62. Youth 1 10 meters? 10 meters? 63. Youth 2 That's like over 30-feet. What's it like looking through one of them? 64. Astronomer Footage of a detector being changed out, astronomers at computer screens – pan to onscreen image. Astronomer Detectors take the focused light and either "image" it into a digital photograph or break the light up into a spectrum. Now, a photograph can tell you a lot about an object, but a			spectroscopy. These unique
every night, even on the 10- meter mirror telescopes in La Palma and Hawaii.62.Youth 1 10 meters?63.Youth 2 That's like over 30-feet. What's it like looking through one of them?64.Astronomer Astronomers don't "look" through telescopes that big. They use devices called "detectors". Detectors take the focused light and either "image" it into a digital photo of stars compared to spectrum of starsNow, a photograph can tell you a lot about an object, but a	1		discoveries are utilized on
Images of Keck and La Palma meter mirror telescopes in La Palma and Hawaii. 62. Youth 1 10 meters? 10 63. Youth 2 That's like over 30-feet. What's it like looking through one of them? 64. Astronomer Footage of a detector being changed out, astronomers at computer screens – pan to onscreen image. Astronomers Onscreen image. Detectors take the focused light and either "image" it into a digital photograph or break the light up into a spectrum. Now, a photograph can tell you a lot about an object, but a Now, a photograph can tell you a			telescopes all over the world
62. Youth 1 10 meters? 63. 63. Youth 2 64. That's like over 30-feet. What's it like looking through one of them? 64. Astronomer Astronomer Astronomer astronomers at computer screens – pan to onscreen image. Detectors take the focused light and either "image" it into a digital photograph or break the light up into a spectrum. Now, a photograph can tell you a lot about an object, but a Now, a object, but a			every night, even on the 10-
62. Youth 1 10 meters? 63. Youth 2 That's like over 30-feet. What's it like looking through one of them? 64. Astronomer 64. Astronomer Footage of a detector being changed out, astronomers at computer screens – pan to onscreen image. Detectors take the focused light and either "image" it into a digital photograph or break the light up into a spectrum. Photo of stars compared to spectrum of stars Now, a photograph can tell you a		Images of Keck and La Palma	meter mirror telescopes in La
63. Youth 2 64. That's like over 30-feet. What's it like looking through one of them? 64. Astronomer Astronomer Astronomers don't "look" through telescopes that big. They use devices called "detectors". Detectors take the focused light and either "image" it into a digital photograph or break the light up into a spectrum. Photo of stars compared to spectrum of stars Now, a photograph can tell you a lot about an object, but a			Palma and Hawaii.
63. Youth 2 That's like over 30-feet. What's it like looking through one of them? 64. Astronomer 64. Astronomer Footage of a detector being changed out, astronomers at computer screens – pan to onscreen image. Astronomers don't "look" through telescopes that big. They use devices called "detectors". Detectors take the focused light and either "image" it into a digital photograph or break the light up into a spectrum. Now, a photograph can tell you a lot about an object, but a	62.		Youth 1
64.That's like over 30-feet. What's it like looking through one of them?64.Astronomer Astronomers don't "look" through telescopes that big. They use devices called "detectors". Detectors take the focused light and either "image" it into a digital photograph or break the light up into a spectrum.Photo of stars compared to spectrum of starsNow, a photograph can tell you a lot about an object, but a			10 meters?
64. Astronomer Footage of a detector being changed out, astronomers at computer screens – pan to onscreen image. Astronomers don't "look" through telescopes that big. They use devices called "detectors". Detectors take the focused light and either "image" it into a digital photograph or break the light up into a spectrum. Now, a photograph can tell you a lot about an object, but a	63.		Youth 2
64. Footage of a detector being changed out, astronomers at computer screens – pan to onscreen image. Astronomer Astronomers don't "look" through telescopes that big. They use devices called "detectors". Detectors take the focused light and either "image" it into a digital photograph or break the light up into a spectrum. Photo of stars compared to spectrum of stars Now, a photograph can tell you a			That's like over 30-feet. What's it
Footage of a detector being changed out, astronomers at computer screens – pan to onscreen image. Astronomers don't "look" through telescopes that big. They use devices called "detectors". Detectors take the focused light and either "image" it into a digital photograph or break the light up into a spectrum. Now, a photograph can tell you a lot about an object, but a			like looking through one of them?
Footage of a detector being changed out, astronomers at computer screens – pan to onscreen image.telescopes that big. They use devices called "detectors".Detectors take the focused light and either "image" it into a digital photograph or break the light up into a spectrum.Detectors take the light up into a spectrum.Photo of stars compared to spectrum of starsNow, a photograph can tell you a lot about an object, but a	64.		Astronomer
astronomers at computer screens – pan to onscreen image. devices called "detectors". Detectors take the focused light and either "image" it into a digital photograph or break the light up into a spectrum. Now, a photograph can tell you a lot about an object, but a			Astronomers don't "look" through
onscreen image. Detectors take the focused light and either "image" it into a digital photograph or break the light up into a spectrum. Now, a photograph can tell you a lot about an object, but a		Footage of a detector being changed out,	telescopes that big. They use
and either "image" it into a digital photograph or break the light up into a spectrum. Now, a photograph can tell you a lot about an object, but a		astronomers at computer screens - pan to	devices called "detectors".
photograph or break the light up into a spectrum. Now, a photograph can tell you a Photo of stars compared to spectrum of stars lot about an object, but a		onscreen image.	Detectors take the focused light
into a spectrum. Now, a photograph can tell you a Photo of stars compared to spectrum of stars Iot about an object, but a			and either "image" it into a digital
Now, a photograph can tell you a Photo of stars compared to spectrum of stars lot about an object, but a			photograph or break the light up
Photo of stars compared to spectrum of stars lot about an object, but a			into a spectrum.
Photo of stars compared to spectrum of stars lot about an object, but a			
			Now, a photograph can tell you <u>a</u>
spectrum can reveal the unseen!	1	Photo of stars compared to spectrum of stars	lot about an object, but a
			spectrum can reveal the unseen!
When astronomers study the			When astronomers study the
spectrum <u>of</u> a star, they can			spectrum of_a star, they can

Scene	I Visual I	Audio
		deduce a lot of information about
		the star. By comparing the
		observed spectrum to those
		created in a lab, they can tell how
		hot <u>the star</u> is. They detect what
		elements are in the star's upper
		layers, and they can find its
		temperature. They can also
		observe the star's apparent
		motion by how much the
		spectrum is "shifted".
		Have you ever heard a siren from
		a police car or ambulance
		change its pitch as it drove by?
		(Audio of a passing siren)
65.		Youth 1
		Sure.
66.		Astronomer
	Compressed and Stretched sound v	wave What you heard was something
		called the Doppler effect – where
	Doppler shift of spectrum	the sound wave was compressed
		as it came toward you, and then
		"stretched" as it went away. This
		same effect can be seen in
		spectra of stars that are in motion
		coming toward or going away
		from the observer. This effect
		can also be used to observe
		motion in galaxies <u>!</u>
67.		Youth 1

Scene	I Visual I	Audio
		Galaxies? Don't we live in a
		galaxy?
68.	Milky Way as seen from above showing spiral	Astronomer
	structure	Yes, <u>it 's</u> called the Milky Way.
		and we've only known that for
		less than a hundred years!
69.		Youth 2
		Why did it take so long for us to
		figure that out?
70.		Astronomer
		Before the 20 th century
	Caroline Hershel star disk	astronomers thought the
		universe consisted of a flat disk
		of stars with the Earth and the
		solar system residing in the
	Image of faint fuzzy.	center. An astronomer named
		Carolyn Herschel even made a
		map of this disk.
		Because telescopes of the day
		didn't have the resolving power
	footage of the Hooker	to see individual stars in
		galaxies, they thought the
		patches of light, which they
		called spiral nebulae, where part
	Images of Edwin Hubble	of this immense disk.
		Astromomers were finally able to
	Telescopic Image of Andromeda Galaxy	see individual stars in the spiral
		nebulae when the 100 inch
		telescope was built atop Mt.
		Wilson.

Scene	I Visual I	Audio
		An astronomer named Edwin
		Hubble used this telescope to
		observe a special type of star
		called <u>a</u> Cepheid variable and
1		was not only able to determine
		that spiral nebulae were
		individual galaxies, but that they
		were <u>also</u> extremely far away.
		Look here. This is the closest
		major galaxy to ours. It's called
		the Andromeda galaxy.
71.		Youth 1
		<u>Awesome!</u>
72.		Astronomer
	Pan across the spiral arm.	
73.		Youth 2
		Didn't Hubble also determine that
		the universe was expanding?
74.		Astronomer
		Yes, he did. The expansion that
	Real Time data sets – Tully and or SDSS	he observed, and later
		observations of cosmic
		background radiation in the
		1960's, confirmed the model that
1		the Universe was created in a
		"big bang"
75.		Youth 1
		Is that why they named the
		Hubble Space Telescope after
		him?

Scene	I Visual I	Audio
76.		Astronomer
		That's right. When NASA
	Images of HST	launched the Hubble Space
		Telescope, they knew that the
		telescope would reveal a
	CG of twinkling star.	universe unseen by land-based
		telescopes of the day.
		See how the stars twinkle?
77.		Youth 1
		Yeah.
78.		Astronomer
		Our atmosphere causes that.
	Atmosphere and diffracting starlight – show	And regardless of how big you
	light coming through and effects of atmosphere	make a telescope, the <u>-limiting</u>
		factor in what <u>a telescope</u> can
		see is the air between it and
		space. So when they put a
		telescope in space astronomers
		knew that they were in for some
		surprises.
	3D flight through Orion Nebula	
		The Hubble space telescope
		revealed the formation of stars
		and planets.
	Supernova remnant images collage	
		The magnificent remnants of
		stellar death.
		It has shown us that the universe

I Visual I	Audio
	is dynamic and not stagnant.
	But what it really showed us is
	that the early universe was
	different than the one we live in
	today.
	Youth 1
	What? What do you mean, the
	early universe? Isn't all the
	same? How can we see the
	early universe if we are older?
	Astronomer
	Great question. See that star
	over there? That's Vega it's
Circle around Vega	about 26 light years away. That
	means that the light which that
	star generates takes 26 years to
	travel to us. So we see it as it
	was 26 years ago.
	Now that star over there is called
Circle around Deneb	Deneb and it is 3,600 light years
	away.
	Youth 1
	So that is the way it looked 3,600
	years ago. Right?
	Astronomer
	That's correct.
	Youth 2
	And how old is the light from the
	Andromeda galaxy?
	Circle around Vega

Scene	I Visual I	Audio
84.		Astronomer
		Over 2 million years. So
	Hubble Ultra Deep Field fly through	telescopes are not only optical
		instruments, they can be used as
		time machines. And the Hubble
		looked back to over 13.5 billion
		years when it took an image
		called "Ultra Deep Field".
		This image revealed a very
		different universe than we live in
	Colliding galaxies	today. It shows small young
		galaxies colliding and merging to
		form larger galaxies, which led to
		galaxies that surround us today.
85.		Youth 1
		So now that we have telescopes
		in space, astronomers don't need
		telescopes on earth anymore,
		right?
86.		Astronomer
		That might have been true if they
		hadn't developed a process
	Adaptive Optics system - pre and post star	called adaptive optics.
	images	Astronomers and engineers can
		now measure the distortions
	Footage of observatories/telescopes- Gemini	cause by the atmosphere in real-
		time and subtract them out
		before the light from an object
	GMT conceptual image	reaches the focal plane of the
		telescope. Because of this

87. Youth 1 Wow, what do you think they will see? 88. Montage of bizarre Hubble images 89. Real time Data Set of Expansion of the Universe B9. Astronomer God for you! Astronomy is filled with puzzles and unsolved mysteries. The recent discovery that the universe is accelerating in its expansion is one that will need lots of observations to figure out what drives it. Dark matter and the physics that hold galaxies together is another one. Balance Galileo at the window, sketching the moon	Scene	I Visual I	Audio
87. Youth 1 87. Youth 1 88. Montage of bizarre Hubble images Youth 1 88. Youth 2 I'm not sure, but I want to be the first astronomer to use that telescope] 89. Astronomer God for you! Astronomy is filled with puzzles and unsolved mysteries. The recent discovery that the universe is accelerating in its expansion is one that will need lots of observations to figure out what drives it. Dark matter and the physics that hold galaxies together is another one. But the one that <u>excites</u> me the most is that we are close to			technology, large aperture
87. Youth 1 87. Youth 1 88. Montage of bizarre Hubble images 88. Youth 2 I'm not sure, but I want to be the first astronomer to use that telescope] 89. Astronomer Good for you! Astronomy is filled with puzzles and unsolved mysteries. The recent discovery that the universe is accelerating in its expansion is one that will need lots of observations to figure out what drives it. Dark matter and the physics that hold galaxies together is another one. But the one that <u>excites</u> me the most is that we are close to			telescopes that operate around
87. Youth 1 87. Youth 1 Wow, what do you think they will see? 88. Montage of bizarre Hubble images I'm not sure, but I want to be the first astronomer to use that telescope! 89. Real time Data Set of Expansion of the Universe Astronomer Dark Matter Isospheres in its expansion is one that will need lots of observations to figure out what drives it. Dark matter and the physics that hold galaxies together is another one. But the one that <u>excites</u> me the most is that we are close to			the world can now rival the
87. Youth 1 87. Youth 1 88. Montage of bizarre Hubble images Youth 2 1'm not sure, but I want to be the first astronomer to use that telescope] I'm not sure, but I want to be the first astronomer to use that telescope] 89. Real time Data Set of Expansion of the Universe Astronomer Dark Matter Isospheres God for you! Astronomy is filled with puzzles and unsolved mysteries. The recent discovery that the universe is accelerating in its expansion is one that will need lots of observations to figure out what drives it. Dark matter and the physics that hold galaxies together is another one. But the one that excites me the most is that we are close to			resolution of the Hubble Space
87. Youth 1 87. Youth 1 88. Montage of bizarre Hubble images Youth 2 1'm not sure, but I want to be the first astronomer to use that telescope! I'm not sure, but I want to be the first astronomer to use that telescope! 89. Real time Data Set of Expansion of the Universe Good for you! Astronomy is filled with puzzles and unsolved mysteries. The recent discovery that the universe is accelerating in its expansion is one that will need lots of observations to figure out what drives it. Dark matter and the physics that hold galaxies together is another one. But the one that excites me the most is that we are close to			Telescope and even larger
87.Youth 1 Wow, what do you think they will see?88.Montage of bizarre Hubble imagesYouth 2 I'm not sure, but I want to be the first astronomer to use that telescope!89.Real time Data Set of Expansion of the UniverseAstronomer Good for you! Astronomy is filled with puzzles and unsolved mysteries. The recent discovery that the universe is accelerating in its expansion is one that will need lots of observations to figure out what drives it. Dark matter and the physics that hold galaxies together is another one. But the one that excites me the most is that we are close to			telescopes, the size of football
87.Youth 1 Wow, what do you think they will see?88.Montage of bizarre Hubble imagesYouth 2 I'm not sure, but I want to be the first astronomer to use that telescope!89.Real time Data Set of Expansion of the UniverseAstronomer Good for you! Astronomy is filled with puzzles and unsolved mysteries. The recent discovery that the universe is accelerating in its expansion is one that will need lots of observations to figure out what drives it. Dark matter and the physics that hold galaxies together is another one. But the one that excites me the most is that we are close to			fields, are planned to be
87. Youth 1 Wow, what do you think they will see? Wow, what do you think they will see? 88. Montage of bizarre Hubble images I'm not sure, but I want to be the first astronomer to use that telescope! 89. Real time Data Set of Expansion of the Universe Astronomer Good for you! Astronomy is filled with puzzles and unsolved mysteries. The recent discovery that the universe is accelerating in its expansion is one that will need lots of observations to figure out what drives it. Dark matter and the physics that hold galaxies together is another one. Galileo at the window, sketching the moon But the one that excites me the most is that we are close to			constructed in the next ten years,
87. Youth 1 Wow, what do you think they will see? Wow, what do you think they will see? 88. Montage of bizarre Hubble images I'm not sure, but I want to be the first astronomer to use that telescope! 89. Real time Data Set of Expansion of the Universe Astronomer Good for you! Astronomy is filled with puzzles and unsolved mysteries. The recent discovery that the universe is accelerating in its expansion is one that will need lots of observations to figure out what drives it. Dark matter and the physics that hold galaxies together is another one. Galileo at the window, sketching the moon But the one that <u>excites</u> me the most is that we are close to			and will look even further back
88.Wow, what do you think they will see?88.Montage of bizarre Hubble imagesYouth 2I'm not sure, but I want to be the first astronomer to use that telescope!I'm not sure, but I want to be the first astronomer to use that telescope!89.Astronomer Good for you! Astronomy is filled with puzzles and unsolved mysteries. The recent discovery that the universe is accelerating in its expansion is one that will need lots of observations to figure out what drives it. Dark matter and the physics that hold galaxies together is another one. But the one that excites me the most is that we are close to			into time.
See?88.Montage of bizarre Hubble imagesYouth 2I'm not sure, but I want to be the first astronomer to use that telescope!I'm not sure, but I want to be the first astronomer to use that telescope!89.Astronomer Good for you! Astronomy is filled with puzzles and unsolved mysteries. The recent discovery that the universe is accelerating in its expansion is one that will need lots of observations to figure out what drives it. Dark matter and the physics that hold galaxies together is another one. But the one that excites me the most is that we are close to	87.		Youth 1
88. Montage of bizarre Hubble images Youth 2 I'm not sure, but I want to be the first astronomer to use that telescope! I'm not sure, but I want to be the first astronomer to use that telescope! 89. Real time Data Set of Expansion of the Universe Astronomer Dark Matter Isospheres Good for you! Astronomy is filled with puzzles and unsolved mysteries. The recent discovery that the universe is accelerating in its expansion is one that will need lots of observations to figure out what drives it. Dark matter and the physics that hold galaxies together is another one. But the one that excites me the most is that we are close to			Wow, what do you think they will
Nontage of bizarre Hubble imagesI'm not sure, but I want to be the first astronomer to use that telescope!89.Astronomer Good for you! Astronomy is filled with puzzles and unsolved mysteries. The recent discovery that the universe is accelerating in its expansion is one that will need lots of observations to figure out what drives it. Dark matter and the physics that hold galaxies together is another one. But the one that <u>excites</u> me the most is that we are close to			see <u>?</u>
89.Astronomer to use that telescope]89.Real time Data Set of Expansion of the UniverseAstronomer Good for you! Astronomy is filled with puzzles and unsolved mysteries. The recent discovery that the universe is accelerating in its expansion is one that will need lots of observations to figure out what drives it. Dark matter and the physics that hold galaxies together is another one. But the one that excites me the most is that we are close to	88.		Youth 2
89.AstronomerB9.Good for you! Astronomy is filled with puzzles and unsolved mysteries. The recent discovery that the universe is accelerating in its expansion is one that will need lots of observations to figure out what drives it. Dark matter and the physics that hold galaxies together is another one.Galileo at the window, sketching the moonBut the one that excites me the most is that we are close to		Montage of bizarre Hubble images	I'm not sure, but I want to be the
89.AstronomerReal time Data Set of Expansion of the UniverseGood for you! Astronomy is filled with puzzles and unsolved mysteries. The recent discovery that the universe is accelerating in its expansion is one that will need lots of observations to figure out what drives it. Dark matter and the physics that hold galaxies together is another one.Galileo at the window, sketching the moonBut the one that excites me the most is that we are close to			first astronomer to use that
Real time Data Set of Expansion of the UniverseGood for you! Astronomy is filled with puzzles and unsolved mysteries. The recent discovery that the universe is accelerating in its expansion is one that will need lots of observations to figure out what drives it. Dark matter and the physics that hold galaxies together is another one.Galileo at the window, sketching the moonBut the one that excites me the most is that we are close to			telescope <u>!</u>
Real time Data Set of Expansion of the Universewith puzzles and unsolved mysteries. The recent discovery that the universe is accelerating in its expansion is one that will need lots of observations to figure out what drives it. Dark matter and the physics that hold galaxies together is another one.Galileo at the window, sketching the moonBut the one that excites me the most is that we are close to	89.		Astronomer
Universemysteries. The recent discovery that the universe is accelerating in its expansion is one that will need lots of observations to figure out what drives it. Dark matter and the physics that hold galaxies together is another one.Galileo at the window, sketching the moonBut the one that excites me the most is that we are close to			Good for you! Astronomy is filled
Dark Matter Isospheresthat the universe is accelerating in its expansion is one that will need lots of observations to figure out what drives it. Dark matter and the physics that hold galaxies together is another one.Galileo at the window, sketching the moonBut the one that excites me the most is that we are close to		Real time Data Set of Expansion of the	with puzzles and unsolved
Dark Matter Isospheresin its expansion is one that will need lots of observations to figure out what drives it. Dark matter and the physics that hold galaxies together is another one.Galileo at the window, sketching the moonBut the one that excites me the most is that we are close to		Universe	mysteries. The recent discovery
Earthlike planetsneed lots of observations to figure out what drives it. Dark matter and the physics that hold galaxies together is another one.Galileo at the window, sketching the moonBut the one that excites me the most is that we are close to			that the universe is accelerating
Earthlike planetsfigure out what drives it. Dark matter and the physics that hold galaxies together is another one.Galileo at the window, sketching the moonBut the one that excites me the most is that we are close to		Dark Matter Isospheres	in its expansion is one that will
Galileo at the window, sketching the moonmatter and the physics that hold galaxies together is another one.But the one that excites me the most is that we are close to			need lots of observations to
Galileo at the window, sketching the moongalaxies together is another one.But the one that excites me the most is that we are close to		Earthlike planets	figure out what drives it. Dark
Galileo at the window, sketching the moon But the one that excites me the most is that we are close to			matter and the physics that hold
most is that we are close to			galaxies together is another one.
		Galileo at the window, sketching the moon	But the one that excites me the
having the optical and instrument			most is that we are close to
naving the optical and institutient			having the optical and instrument

Scene	I Visual I	Audio
	Full Dome fly through of the universe.	power to observe earth-like
		planets around other stars and
		should be able detect life on
		those planets!
		Who knows, maybe you will be
		as famous as Galileo is today,
		because of two small pieces of
		glass that he turned to the
		heavens to launch humanity on
		the ultimate voyage of discovery.
90.	Two pieces of glass coming together, as they line up audience flies through them past a montage of celestial objects – planets, nebula, galaxies.	
	Title appears	
	Credits for production	