Most Efficient Spectrograph to Shoot the Southern Skies

25. Mai 2009

ESO’s Very Large Telescope — Europe’s flagship facility for ground-based astronomy — has been equipped with the first of its second generation instruments: X-shooter. It can record the entire spectrum of a celestial object in one shot — from the ultraviolet to the near-infrared — with high sensitivity. This unique new instrument will be particularly useful for the study of distant exploding objects called gamma-ray bursts.

X-shooter offers a capability that is unique among astronomical instruments installed at large telescopes,” says Sandro D’Odorico, who coordinated the Europe-wide consortium of scientists and engineers that built this remarkable instrument. “Until now, different instruments at different telescopes and multiple observations were needed to cover this kind of wavelength range, making it very difficult to compare data, which, even though from the same object, could have been taken at different times and under different sky conditions.”

X-shooter collects the full spectrum from the ultraviolet (300 nm) to the near-infrared (2400 nm) in parallel, capturing up to half of all the light from an object that passes through the atmosphere and the various elements of the telescope. “All in all, X-shooter can save us a factor of three or more in terms of precious telescope time and opens a new window of opportunity for the study of many, still poorly understood, celestial sources,” says D’Odorico.

The name of the 2.5-ton instrument was chosen to stress its capacity to capture data highly efficiently from a source whose nature and energy distribution are not known in advance of the observation. This property is particularly crucial in the study of gamma-ray bursts, the most energetic explosions known to occur in the Universe (eso0917). Until now, a rough estimate of the distance of the target was needed, so as to know which instrument to use for a detailed study. Thanks to X-shooter, astronomers won’t have to go through this first observing step. This is particularly relevant for gamma-ray bursts, which fade away very quickly and where being fast is the key to understanding the nature of these elusive cosmic sources.

I am very confident that X-shooter will discover the most distant gamma-ray bursts in the Universe, or in other words, the first objects that formed in the young Universe,” says François Hammer, who leads the French efforts in X-shooter.

X-shooter was built by a consortium of 11 institutes in Denmark, France, Italy and the Netherlands, together with ESO. In total 68 person-years of work by engineers, technicians and astronomers and a global budget of six million Euros were required. The development time was remarkably fast for a project of this complexity, which was completed in just over five years, starting from the kick-off meeting held in December 2003.

The success of X-shooter and its relatively short completion time are a tribute to the quality and dedication of the many people involved in the project,” says Alan Moorwood, ESO Director of Programmes.

The instrument was installed at the telescope at the end of 2008 and the first observations in its full configuration were made on 14 March 2009, demonstrating that the instrument works efficiently over the full spectral range with unprecedented resolution and quality. X-shooter has already proved its full capability by obtaining the complete spectra of low metallicity stars, of X-ray binaries, of distant quasars and galaxies, of the nebulae associated with Eta Carinae and the supernova 1987A, as well as with the observation of a distant gamma-ray burst that coincidently exploded at the time of the commissioning run.

X-shooter will be offered to the astronomical community from 1 October 2009. The instrument is clearly answering a need in the scientific community as about 150 proposals were received for the first runs of X-shooter, for a total of 350 observing nights, making it the second most requested instrument at the Very Large Telescope in this period.

Weitere Informationen

ESO’s Very Large Telescope (VLT) is the world’s most advanced optical instrument. It is an ensemble of four 8.2-metre telescopes located at the Paranal Observatory on an isolated mountain peak in the Atacama Desert in North Chile. The four 8.2-metre telescopes have a total of 12 focal stations where different instruments for imaging and spectroscopic observations are installed and a special station where the light of the four telescopes is combined for interferometric observations.

The first VLT instrument was installed in 1998 and has been followed by 12 more in the last 10 years, distributed at the different focal stations. X-shooter is the first of the second generation of VLT instruments and replaces the workhorse-instrument FORS1, which has been successfully used for more than ten years by hundreds of astronomers. X-shooter operates at the Cassegrain focus of the Kueyen telescope (UT2).

In response to an ESO Call for Proposals for second generation VLT instrumentation, ESO received three proposals for an intermediate resolution, high efficiency spectrograph. These were eventually merged into a single proposal around the present concept of X-shooter, which was approved for construction in November 2003. The Final Design Review, at which the instrument design is finalised and declared ready for construction, took place in April 2006. The first observations with the instrument at the telescope in its full configuration were on 14 March 2009.

X-shooter is a joint project by Denmark, France, Italy, the Netherlands and ESO. The collaborating institutes in Denmark are the Niels Bohr and the DARK Institutes of the University of Copenhagen and the National Space Institute (Technical University of Denmark); in France GEPI at the Observatoire de Paris and APC at the Université D. Diderot, with contributions from the CEA and the CNRS; in Italy the Osservatorio di Brera, Trieste, Palermo and Catania; and in the Netherlands, the University of Amsterdam, the University of Nijmegen and ASTRON. Beside the participating institutes and ESO, the project was supported by the National Agencies of Italy (INAF), the Italian Ministry for Education, University and Research (MIUR), the Netherlands (NOVA and NWO) and by the Carlsberg Foundation in Denmark. The project was also supported in Denmark and the Netherlands with funds from the EU Descartes prize, the highest European prize for science, awarded in 2002 to the European collaboration on gamma-ray burst research headed by Professor Ed van den Heuvel.

ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe. It is supported by 14 countries: Austria, Belgium, Czechia, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in the Atacama Desert region of Chile: La Silla, Paranal and Chajnantor.


Sandro D’Odorico
Garching, Germany
Tel: +49 89 32 00 62 39

François Hammer
Paris Observatory
Paris, France
Tel: +33 1 45 07 74 08

Per Kjærgaard Rasmussen
Niels Bohr Institute
Copenhagen, Denmark
Tel: +45 353 259 87

Sofia Randich
INAF-Osservatorio di Arcetri
Tel: +39 055 27 52 251

Lex Kaper
Astronomical Institute "Anton Pannekoek"
Amsterdam, Netherlands
Tel: +31 20 52 57 474

Connect with ESO on social media

Über die Pressemitteilung

Pressemitteilung Nr.:eso0920
Legacy ID:PR 20/09
Typ:Unspecified : Technology : Observatory : Instrument
Facility:Very Large Telescope


An X-shooter spectrum
An X-shooter spectrum
The X-shooter instrument
The X-shooter instrument
First light of X-shooter
First light of X-shooter