Pressemitteilung

ESO-Teleskop beobachtet Sternentanz um supermassereiches schwarzes Loch und bestätigt Einstein

16. April 2020

Beobachtungen mit dem Very Large Telescope (VLT) der ESO haben zum ersten Mal gezeigt, dass sich ein Stern, der das supermassereiche Schwarze Loch im Zentrum der Milchstraße umkreist, genauso bewegt, wie es die Allgemeine Relativitätstheorie von Einstein vorhersagt. Seine Umlaufbahn hat die Form einer Rosette, während die Newtonsche Gravitationstheorie die Form einer Ellipse vorhersagt. Ermöglicht wurde dieses lang ersehnte Ergebnis durch immer genauere Messungen im Laufe von fast 30 Jahren, die es den Wissenschaftlern ermöglicht haben, die Geheimnisse des im Herzen unserer Galaxie schlummernden Giganten zu entschlüsseln.

Einsteins Allgemeine Relativitätstheorie sagt voraus, dass gravitativ gebundene Bahnen von Himmelskörpern nicht wie in der Newtonschen Gravitation geschlossen sind. Vielmehr erfährt die Bahnellipse selbst eine Rotation in Bewegungsrichtung um den anziehenden Körper herum. Dieser berühmte Effekt - erstmals bei der Umlaufbahn des Planeten Merkur um die Sonne beobachtet - war der erste Beleg für die Gültigkeit der Allgemeine Relativitätstheorie. Hundert Jahre später haben wir nun den gleichen Effekt bei der Bewegung eines Sterns entdeckt, der die kompakte Radioquelle Sagittarius (Sgr) A* im Zentrum der Milchstraße umkreist. Dieser Durchbruch durch Beobachtungen untermauert den Beweis, dass Sgr A* ein supermassereiches Schwarzes Loch mit der 4-Millionenfachen Masse der Sonne sein muss“, sagt Reinhard Genzel, Direktor am Max-Planck-Institut für extraterrestrische Physik (MPE) in Garching und Initiator des 30 Jahre dauernden Programms, das zu diesem Ergebnis führte.

In einer Entfernung von 26.000 Lichtjahren von der Sonne gelegen, bilden Sgr A* und der dichte Sternenhaufen um ihn herum ein einzigartiges Labor zur Überprüfung der Physik in einem ansonsten unerforschten und extremen Gravitationsregime. Einer dieser Sterne, S2, bewegt sich auf das supermassereiche Schwarze Loch zu, und zwar in einer Entfernung von weniger als 20 Milliarden Kilometern (hundertzwanzigmal die Entfernung zwischen Sonne und Erde), was ihn zu einem der nächstgelegenen Sterne macht, die je auf einer Umlaufbahn um den massereichen Riesen gefunden wurden. Bei seiner dichtesten Annäherung an das Schwarze Loch rast S2 mit fast drei Prozent der Lichtgeschwindigkeit durch den Weltraum und vollendet einen Umlauf einmal alle 16 Jahre. „Nachdem wir den Stern über zweieinhalb Jahrzehnte in seiner Umlaufbahn verfolgt haben, können wir mit unseren exzellenten Messungen die Schwarzschild-Präzession von S2 auf seiner Bahn um Sgr A* zuverlässig nachweisen“, sagt Stefan Gillessen vom MPE, der die Analyse der Messungen leitete, die heute in der Zeitschrift Astronomy & Astrophysics veröffentlicht wurden.

Die meisten Sterne und Planeten haben eine von der Kreisbahn abweichende Umlaufbahn und bewegen sich daher bisweilen auf das Objekt zu, um das sie rotieren, und von ihm weg. Die Umlaufbahn von S2 verläuft so, dass sich die Lage seines dem supermassereichen Schwarzen Loch am nächsten gelegenen Punktes mit jeder Umdrehung ändert, so dass die nächste Umlaufbahn gegenüber der vorhergehenden gedreht wird, wodurch eine Rosettenform entsteht. Die Allgemeine Relativitätstheorie liefert eine präzise Vorhersage, wie stark sich seine Bahn ändert. Die neuesten Messungen aus dieser Studie stimmen genau mit der Theorie überein. Dieser Effekt, bekannt als Schwarzschild-Präzession, war noch nie zuvor für einen Stern um ein supermassereiches Schwarzes Loch gemessen worden.

Die Studie mit dem VLT der ESO hilft den Wissenschaftlern auch, mehr über die Umgebung des supermassereichen Schwarzen Lochs im Zentrum unserer Galaxie zu erfahren. „Weil die S2-Messungen der Allgemeinen Relativitätstheorie so gut folgen, können wir strenge Grenzen dafür setzen, wie viel unsichtbares Material, wie etwa verteilte dunkle Materie oder mögliche kleinere Schwarze Löcher, um Sgr A* herum vorhanden ist. Dies ist von großem Interesse für das Verständnis der Entstehung und Entwicklung supermassereicher Schwarzer Löcher“, sagen Guy Perrin und Karine Perraut, die französischen leitenden Wissenschaftler des Projekts.

Dieses Ergebnis ist der Höhepunkt von 27 Jahren Beobachtungen des S2-Sterns mit einer Vielzahl von Instrumenten, die zum größten Teil am VLT der ESO in der Atacama-Wüste in Chile eingesetzt wurden. Die Anzahl der Datenpunkte, die die Position und Geschwindigkeit des Sterns markieren, zeugt von der Gründlichkeit und Genauigkeit der neuen Forschung: Das Team führte insgesamt über 330 Messungen mit den Instrumenten GRAVITY, SINFONI und NACO durch. Da S2 Jahre braucht, um das supermassereiche Schwarze Loch zu umkreisen, war es entscheidend, dem Stern fast drei Jahrzehnte lang zu folgen, um die Feinheiten seiner Bahnbewegung zu entschlüsseln.

Die Forschung wurde von einem internationalen Team unter der Leitung von Frank Eisenhauer vom MPE mit Mitarbeitern aus Frankreich, Portugal, Deutschland und der ESO durchgeführt. Die Arbeitsgruppe bildet die Kollaboration GRAVITY, benannt nach dem von ihnen für das VLT-Interferometer entwickelten Instrument, das das Licht aller vier 8-Meter-Teleskope des VLT zu einem Super-Teleskop (mit einer Auflösung, die der eines Teleskops mit 130 Metern Durchmesser entspricht) kombiniert. Dasselbe Team berichtete 2018 über einen weiteren Effekt, der von der Allgemeinen Relativitätstheorie vorhergesagt wurde: Sie sahen, wie das von S2 empfangene Licht auf größere Wellenlängen gedehnt wurde, als der Stern nahe an Sgr A* vorbeiflog. „Unser vorheriges Ergebnis hat gezeigt, dass das von dem Stern ausgesandte Licht eine Gravitationswirkung gemäß der Allgemeinen Relativitätstheorie erfährt. Jetzt haben wir gezeigt, dass der Stern selbst ihre Auswirkungen spürt“, sagt Paulo Garcia, ein Forscher am portugiesischen Zentrum für Astrophysik und Gravitation und einer der leitenden Wissenschaftler des GRAVITY-Projekts.

Mit dem kommenden Extremely Large Telescope der ESO glaubt das Team, dass es in der Lage wäre, viel schwächere Sterne zu sehen, die noch näher am supermassereichen Schwarzen Loch kreisen. „Wenn wir Glück haben, könnten wir Sterne so nah am Schwarzen Loch einfangen, dass sie dessen Rotation, den Spin, tatsächlich spüren“, sagt Andreas Eckart von der Universität Köln, einer der leitenden Wissenschaftler des Projekts. Dies würde bedeuten, dass die Astronomen in der Lage wären, die beiden Größen, den Spin und die Masse, die Sgr A* charakterisieren, zu messen und Raum und Zeit um ihn herum zu definieren. „Das wäre wieder eine ganz andere Stufe der Überprüfung der Relativitätstheorie“, sagt Eckart.

Weitere Informationen

Diese Forschungsarbeit wurde in dem Artikel „Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole“ vorgestellt, der in Astronomy & Astrophysics erscheint (DOI: 10.1051/0004-6361/202037813).

Das GRAVITY-Kollaborationsteam setzt sich zusammen aus R. Abuter (Europäische Südsternwarte, Garching, Deutschland [ESO]), A. Amorim (Universidade de Lisboa - Faculdade de Ciências, Portugal und Centro de Astrofísica e Gravitação, IST, Universidade de Lisboa, Portugal [CENTRA]), M. Bauböck (Max-Planck-Institut für extraterrestrische Physik, Garching, Deutschland [MPE]), J.P. Berger (Univ. Grenoble Alpes, CNRS, Grenoble, Frankreich [IPAG] und ESO), H. Bonnet (ESO), W. Brandner (Max-Planck-Institut für Astronomie, Heidelberg, Deutschland [MPIA]), V. Cardoso (CENTRA und CERN, Genève, Schweiz), Y. Clénet (Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, Meudon, Frankreich [LESIA], T. de Zeeuw (Sterrewacht Leiden, Universität Leiden, Niederlande und MPE), J. Dexter (Abteilung für Astrophysik und Planetenwissenschaften, JILA, Duane Physics Bldg, University of Colorado, Boulder, USA und MPE), A. Eckart (1. Institut für Physik, Universität zu Köln, Deutschland [Köln] und Max-Planck-Institut für Radioastronomie, Bonn, Deutschland), F. Eisenhauer (MPE), N.M. Förster Schreiber (MPE), P. Garcia (Faculdade de Engenharia, Universidade do Porto, Portugal und CENTRA), F. Gao (MPE), E. Gendron (LESIA), R. Genzel (MPE, Fakultäten für Physik und Astronomie, Le Conte Hall, Universität von Kalifornien, Berkeley, USA), S. Gillessen (MPE), M. Habibi (MPE), X. Haubois (Europäische Südsternwarte, Santiago, Chile [ESO Chile]), F. Gao (MPE), T. Henning (MPIA), S. Hippler (MPIA), M. Horrobin (Köln), A. Jiménez-Rosales (MPE), L. Jochum (ESO Chile), L. Jocou (IPAG), A. Kaufer (ESO Chile), P. Kervella (LESIA), S. Lacour (LESIA), V. Lapeyrère (LESIA), J.- B. Le Bouquin (IPAG), P. Léna (LESIA), M. Nowak (Institut für Astronomie, Cambridge, UK und LESIA), T. Ott (MPE), T. Paumard (LESIA), K. Perraut (IPAG), G. Perrin (LESIA), O. Pfuhl (ESO, MPE), G. Rodríguez-Coira (LESIA), J. Shangguan (MPE), S. Scheithauer (MPIA), J. Stadler (MPE), O. Straub (MPE), C. Straubmeier (Köln), E. Sturm (MPE), L.J. Tacconi (MPE), F. Vincent (LESIA), S. von Fellenberg (MPE), I. Waisberg (Abteilung für Teilchenphysik & Astrophysik, Weizmann Institute of Science, Israel und MPE), F. Widmann (MPE), E. Wieprecht (MPE), E. Wiezorrek (MPE), J. Woillez (ESO) und S. Yazici (MPE, Köln).

Die Europäische Südsternwarte (engl. European Southern Observatory, kurz ESO) ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Die Organisation hat 16 Mitgliedsländer: Belgien, Dänemark, Deutschland, Finnland, Frankreich, Großbritannien, Irland, Italien, die Niederlande, Österreich, Polen, Portugal, Spanien, Schweden, die Schweiz und die Tschechische Republik. Hinzu kommen das Gastland Chile und Australien als strategischer Partner. Die ESO führt ein ehrgeiziges Programm durch, das sich auf die Planung, den Bau und den Betrieb leistungsfähiger bodengebundener Beobachtungseinrichtungen konzentriert, die es Astronomen ermöglichen, wichtige wissenschaftliche Entdeckungen zu machen. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO verfügt über drei weltweit einzigartige Beobachtungsstandorte in Chile: La Silla, Paranal und Chajnantor. Auf dem Paranal betreibt die ESO das Very Large Telescope (VLT) und das weltweit führende Very Large Telescope Interferometer sowie zwei Durchmusterungsteleskope: VISTA im Infrarotbereich und das VLT Survey Telescope (VST) für sichtbares Licht. Am Paranal wird die ESO zukünftig außerdem das Cherenkov Telescope Array South beherbergen und betreiben, das größte und empfindlichste Gammastrahlenobservatorium der Welt. Die ESO ist zusätzlich einer der Hauptpartner bei zwei Projekten auf Chajnantor, APEX und ALMA, dem größten astronomischen Projekt überhaupt. Auf dem Cerro Armazones unweit des Paranal errichtet die ESO zur Zeit das Extremely Large Telescope (ELT) mit 39 Metern Durchmesser, das einmal das größte optische Teleskop der Welt werden wird.

Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsländern (und einigen weiteren Staaten) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie in Heidelberg.

Links

Kontaktinformationen

Markus Nielbock
ESO Science Outreach Network - Haus der Astronomie
Heidelberg, Deutschland
Tel: +49 (0)6221 528-134
E-Mail: eson-germany@eso.org

Reinhard Genzel
Director, Max Planck Institute for Extraterrestrial Physics
Garching bei München, Germany
Tel: +49 89 30000 3280
E-Mail: genzel@mpe.mpg.de

Stefan Gillessen
Max-Planck Institute for Extraterrestrial Physics
Garching bei München, Germany
Tel: +49 89 30000 3839
Mobil: +49 176 99 66 41 39
E-Mail: ste@mpe.mpg.de

Frank Eisenhauer
Max-Planck Institute for Extraterrestrial Physics
Garching bei München, Germany
Tel: +49 89 30000 3563
Mobil: +49 162 3105080
E-Mail: eisenhau@mpe.mpg.de

Paulo Garcia
Faculdade de Engenharia, Universidade do Porto and Centro de Astrofísica e Gravitação, IST, Universidade de Lisboa, Portugal
Porto, Portugal
Mobil: +351 963235785
E-Mail: pgarcia@fe.up.pt

Karine Perraut
IPAG of Université Grenoble Alpes/CNRS
Grenoble, France
E-Mail: karine.perraut@univ-grenoble-alpes.fr

Guy Perrin
LESIA – Observatoire de Paris - PSL
Meudon, France
E-Mail: guy.perrin@observatoiredeparis.psl.eu

Andreas Eckart
1st Institute of Physics, University of Cologne
Cologne, Germany
Tel: +49 221 470 3546
E-Mail: eckart@ph1.uni-koeln.de

Bárbara Ferreira
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6670
Mobil: +49 151 241 664 00
E-Mail: pio@eso.org

Connect with ESO on social media

Dies ist eine Übersetzung der ESO-Pressemitteilung eso2006.

Über die Pressemitteilung

Pressemitteilung Nr.:eso2006de
Name:Sgr A*
Typ:Milky Way : Galaxy : Component : Central Black Hole
Facility:Very Large Telescope, Very Large Telescope Interferometer
Instruments:GRAVITY, NACO, SINFONI
Science data:2020A&A...636L...5G

Bilder

Künstlerische Darstellung der Schwarzschild-Präzession
Künstlerische Darstellung der Schwarzschild-Präzession
Umlaufbahnen von Sternen um das Schwarze Loch im Herzen der Milchstraße
Umlaufbahnen von Sternen um das Schwarze Loch im Herzen der Milchstraße
Weitfeldaufnahme des Zentrums der Milchstraße
Weitfeldaufnahme des Zentrums der Milchstraße
Sagittarius A* und das Sternbild des Schützen
Sagittarius A* und das Sternbild des Schützen

Videos

ESOcast 219 Light: Sternentanz um supermassereiches schwarzes Loch
ESOcast 219 Light: Sternentanz um supermassereiches schwarzes Loch
Künstlerische Darstellung des Präzessionseffekts auf S2
Künstlerische Darstellung des Präzessionseffekts auf S2
Zoom auf das Herz der Milchstraße
Zoom auf das Herz der Milchstraße
Der Stern S2 nähert sich dem Schwarzen Loch im Zentrum der Milchstraße.
Der Stern S2 nähert sich dem Schwarzen Loch im Zentrum der Milchstraße.
Interview mit Reinhard Genzel (auf Englisch)
Interview mit Reinhard Genzel (auf Englisch)
Interview mit Reinhard Genzel (auf Deutsch)
Interview mit Reinhard Genzel (auf Deutsch)
Another artist’s impression of S2’s precession effect
Another artist’s impression of S2’s precession effect
nur auf Englisch