ALMA and Interferometry

Artist’s impression of ALMA’s array of antennas on Chajnantor

Why do we refer to ALMA as a single telescope, when there are many separate dishes dotting the Chajnantor plateau? These dishes make up the array of antennas mentioned in the name Atacama Large Millimeter/submillimeter Array. The advanced design of ALMA allows the dishes to work together as a single telescope, more powerful than any single dish could be. Indeed, without this technological feat, ALMA’s ambitious scientific goals would be unattainable. This is due to a fundamental limit placed on any telescope with a single main dish or mirror, which governs the achievable sharpness of its vision. It is a limit that particularly affects observations at relatively long wavelengths, such as the millimetre and submillimetre wavelengths at which ALMA operates.

The resolution (or degree of detail in the image) of a single telescope depends both on the wavelength it operates at and on the diameter of the main dish or mirror. The longer the wavelength, the worse the resolution, and the larger the diameter, the better the resolution. Consequently, a long-wavelength radio telescope has worse resolution than an optical- or infrared-wavelength telescope of the same size.

ESO’s optical and infrared Very Large Telescope on Cerro Paranal has Unit Telescopes with mirror diameters of 8.2 metres. At infrared wavelengths of about 2 micrometres, it has a maximum resolution — using adaptive optics — of about 50 milliarcseconds (a little over ten millionths of a degree). The ALMA dishes have a diameter that is, at 12 metres, about 50% greater than the VLT mirrors. However, ALMA observes at wavelengths that are in the millimetre range, up to a thousand times longer than infrared light. This far outweighs the slight size advantage that the ALMA dishes have over the VLT mirrors and so a single ALMA antenna would have a resolution, at millimetre wavelengths, of about 20 arcseconds.

In fact, to have a comparable resolution to the VLT, a single ALMA dish would therefore need a reflecting surface with a diameter of several kilometres — clearly not a feasible construction proposition. This is why ALMA consists of an array of many individual antennas spread out over a very large area, working together in what is known as an interferometer.

The Technical Building on the Array Operations Site houses the ALMA correlator

The resolution of an interferometer depends not on the diameter of individual dishes, but on the maximum separation between the antennas. Moving the antennas further apart increases the resolution. The signals from the antennas are brought together and processed by a specialised supercomputer — the ALMA correlator — to mimic the effect of a single telescope. In other words, an interferometer acts like a single telescope that is as large as the whole array.

Increasing the maximum distance between the antennas increases the resolving power of the interferometer, allowing it to detect smaller details. The ability to link antennas over baselines of many kilometres is crucial to obtaining extremely good resolution and a high degree of detail in the images.

ALMA’s main array has fifty 12-metre antennas, arranged in configurations spread over distances from 150 metres to 16 km. The array thus simulates a giant, single telescope much larger than any that could actually be built. In fact, ALMA has a maximum resolution which is even better than that achieved, at visible wavelengths, by the Hubble Space Telescope.

Four antennas for ALMA’s Atacama Compact Array, three of diameter 12 metres, and one of diameter 7 metres.

Four additional 12-metre antennas and twelve 7-metre antennas form the Atacama Compact Array. The smaller 7-metre antennas can be clustered more closely together without bumping into each other, and, because of the way interferometers behave, this compact arrangement allows them to see the broader structure or “big picture” of the astronomical objects that are observed. In addition, the four 12-metre antennas of the Atacama Compact Array are used separately to measure the absolute brightness of the objects observed — a quantity that cannot be measured with an interferometer.

The different configurations of the telescope allow astronomers to probe both the broad structure of an astronomical source and its very finest details. However, to switch between compact and wide configurations of the array, the antennas must be physically moved. This is done with two custom-built transporters, designed to lift the antennas, which each weigh over 100 tonnes, move them kilometres across the desert, and position them on concrete docking pads with millimetre precision.

Thanks to the technique of interferometry, ALMA’s many antennas work together as a unified science machine, letting astronomers make observations that would be impossible with a single dish. This is why we can think of ALMA as not just many antennas, but as one, revolutionary telescope.

Further reading:

For more technical details of ALMA as an interferometer, see the article “How Will ALMA Make Images?” from issue 5 of the ALMA Newsletter.

Send us your comments!
Subscribe to receive news from ESO in your language
Accelerated by CDN77
Terms & Conditions
Cookie Settings and Policy

Our use of Cookies

We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.

You can read manage your cookie preferences and find out more by visiting 'Cookie Settings and Policy'.

ESO Cookies Policy


The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.

This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.

What are cookies?

Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.

Categories of cookies we use

Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
csrftoken
XSRF protection token. We use this cookie to protect against cross-site request forgery attacks.
1st party
Stored
1 year
user_privacy
Your privacy choices. We use this cookie to save your privacy preferences.
1st party
Stored
6 months
_grecaptcha
We use reCAPTCHA to protect our forms against spam and abuse. reCAPTCHA sets a necessary cookie when executed for the purpose of providing its risk analysis. We use www.recaptcha.net instead of www.google.com in order to avoid unnecessary cookies from Google.
3rd party
Stored
6 months

Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
preferred_language
Language settings. We use this cookie to remember your preferred language settings.
1st party
Stored
1 year
ON | OFF
sessionid
ESO Shop. We use this cookie to store your session information on the ESO Shop. This is just an identifier which is used on the server in order to allow you to purchase items in our shop.
1st party
Stored
2 weeks
ON | OFF

Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.

Matomo Cookies:

This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.

On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.

ON | OFF

Matomo cookies settings:

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
_pk_id
Stores a unique visitor ID.
1st party
Stored
13 months
_pk_ses
Session cookie temporarily stores data for the visit.
1st party
Stored
30 minutes
_pk_ref
Stores attribution information (the referrer that brought the visitor to the website).
1st party
Stored
6 months
_pk_testcookie
Temporary cookie to check if a visitor’s browser supports cookies (set in Internet Explorer only).
1st party
Stored
Temporary cookie that expires almost immediately after being set.

Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.

Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.

YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.

Cookies can also be classified based on the following elements.

Regarding the domain, there are:

As for their duration, cookies can be:

How to manage cookies

Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.

In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:

Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.

You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).

Updates to the ESO Cookies Policy

The ESO Cookies Policy may be subject to future updates, which will be made available on this page.

Additional information

For any queries related to cookies, please contact: pdprATesoDOTorg.

As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.